The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094790 Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 7 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2*n, s(0) = 1, s(2n) = 3. 14
 1, 3, 9, 28, 89, 286, 924, 2993, 9707, 31501, 102256, 331981, 1077870, 3499720, 11363361, 36896355, 119801329, 388991876, 1263047761, 4101088878, 13316149700, 43237262993, 140390505643, 455845099957, 1480119728920 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In general a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n)) counts (s(0), s(1), ..., s(2n)) such that 0 < s(i) < m and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = j, s(2n) = k. With interpolated zeros (0,0,1,0,3,0,9,...), counts walks of length n between the first and third nodes of P_6. - Paul Barry, Jan 26 2005 Counts all paths of length (2*n+1), n >= 0, starting at the initial node and ending on the nodes 1, 2, 3, 4 and 5 on the path graph P_6, see the Maple program. - Johannes W. Meijer, May 29 2010 With offset 0 = the INVERT transform of A055588. - Gary W. Adamson, Apr 01 2011 LINKS Michael De Vlieger, Table of n, a(n) for n = 1..1956 Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020. László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2. Index entries for linear recurrences with constant coefficients, signature (5,-6,1). FORMULA a(n) = (2/7)*Sum_{k=1..6} sin(Pi*k/7)*sin(3*Pi*k/7)*(2*cos(Pi*k/7))^(2n). a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3). G.f.: x*(1-2*x)/(1 - 5*x + 6*x^2 - x^3). a(n) = rightmost term in M^n * [1,0,0] where M = the 3 X 3 matrix [2,1,1; 1,2,0; 1,0,1]. E.g., M^3 * [1,0,0] = [19,14,9]; right term = 9 = a(3). - Gary W. Adamson, Apr 04 2006 MAPLE with(GraphTheory):G:=PathGraph(6): A:= AdjacencyMatrix(G): nmax:=24; n2:=2*nmax+1: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[k, 1], k=1..5); od: seq(a(2*n+1), n=0..nmax); # Johannes W. Meijer, May 29 2010 MATHEMATICA f[n_]:= FullSimplify[ TrigToExp[(2/7)Sum[ Sin[Pi*k/7]Sin[3Pi*k/7](2Cos[Pi*k/7] )^(2n), {k, 6}]]]; Table[f[n], {n, 25}] (* Robert G. Wilson v, Jun 18 2004 *) LinearRecurrence[{5, -6, 1}, {1, 3, 9}, 30] (* Harvey P. Dale, Nov 19 2019 *) PROG (PARI) Vec(x*(1-2*x)/(1-5*x+6*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Jun 14 2015 (Magma) [n le 3 select 3^(n-1) else 5*Self(n-1) -6*Self(n-2) +Self(n-3): n in [1..31]]; // G. C. Greubel, Feb 12 2023 (SageMath) @CachedFunction def a(n): # a = A094790 if (n<4): return 3^(n-1) else: return 5*a(n-1) - 6*a(n-2) + a(n-3) [a(n) for n in range(1, 41)] # G. C. Greubel, Feb 12 2023 CROSSREFS Cf. A005021, A028495, A052975, A055588, A078038, A080937, A094789. Sequence in context: A333504 A199104 A049220 * A007822 A094164 A094803 Adjacent sequences: A094787 A094788 A094789 * A094791 A094792 A094793 KEYWORD nonn,easy AUTHOR Herbert Kociemba, Jun 11 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 7 04:44 EDT 2023. Contains 363151 sequences. (Running on oeis4.)