login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199104
G.f. satisfies: A(x) = exp( Sum_{n>=1} A(x^n)/(1-x)^n * x^n/n ).
1
1, 1, 3, 9, 28, 88, 284, 931, 3109, 10532, 36162, 125546, 440201, 1556519, 5544715, 19879791, 71685522, 259809731, 945913555, 3457947627, 12687782600, 46709518473, 172484216742, 638712762962, 2371241532557, 8824154454401, 32909438791706, 122984173008460
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 28*x^4 + 88*x^5 + 284*x^6 + 931*x^7 +...
where
log(A(x)) = A(x)/(1-x)*x + A(x^2)/(1-x)^2*x^2/2 + A(x^3)/(1-x)^3*x^3/3 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x)^-m*x^m/m*subst(A, x, x^m+x*O(x^n))))); polcoeff(A, n)}
CROSSREFS
Cf. A199103.
Sequence in context: A170953 A358092 A333504 * A049220 A094790 A007822
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 03 2011
STATUS
approved