login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199102
G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)*A(x^(n+k)) ).
1
1, 2, 6, 20, 63, 213, 719, 2505, 8864, 31948, 116725, 432074, 1616022, 6100775, 23214144, 88949045, 342899474, 1329020016, 5175758820, 20243197030, 79480515302, 313155710230, 1237771800135, 4906616164195, 19502048947616, 77703941363599, 310305199056779
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 20*x^3 + 63*x^4 + 213*x^5 + 719*x^6 +...
where
log(A(x)) = (A(x)+A(x^2))*x + (A(x^2)+2*A(x^3)+A(x^4))*x^2/2 + (A(x^3)+3*A(x^4)+3*A(x^5)+A(x^6))*x^3/3 + (A(x^4)+4*A(x^5)+6*A(x^6)+4*A(x^7)+A(x^8))*x^4/4 +...
Explicitly,
log(A(x)) = 2*x + 8*x^2/2 + 32*x^3/3 + 100*x^4/4 + 387*x^5/5 + 1370*x^6/6 + 5315*x^7/7 + 20444*x^8/8 + 80897*x^9/9 + 320883*x^10/10 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m/m*sum(k=0, m, binomial(m, k)*subst(A, x, x^(m+k)+x*O(x^n)))))); polcoeff(A, n)}
CROSSREFS
Cf. A073063.
Sequence in context: A247076 A177792 A193235 * A053730 A220874 A273902
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 03 2011
STATUS
approved