login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A247076
Number of tilings of a 5 X 2n rectangle using 2n pentominoes of shape P.
3
1, 2, 6, 20, 62, 194, 612, 1922, 6038, 18980, 59646, 187442, 589076, 1851266, 5817894, 18283700, 57459518, 180575906, 567489348, 1783428098, 5604714422, 17613731780, 55354032894, 173959101458, 546694927604, 1718078222594, 5399341807686, 16968314698580
OFFSET
0,2
FORMULA
G.f.: (x-1)*(x^2+x+1)/(5*x^3+2*x^2+2*x-1).
a(n) = 2*a(n-1)+2*a(n-2)+5*a(n-3) for n>3, a(0)=1; a(1)=2, a(2)=6, a(3)=20.
EXAMPLE
a(2) = 6:
._______. ._______. ._______. ._______. ._______. ._______.
| | | | | | | | | | | | | ._| | | |_. |
| ._| ._| |_. |_. | | ._|_. | |_. | ._| |___| | | |___|
|_| |_| | | |_| |_| |_| | |_| | |_|_| | | |___| |___| |
| | | | | | | | | | | | | ._| | | |_. |
|___|___| |___|___| |___|___| |___|___| |_|_____| |_____|_| .
MAPLE
a:= proc(n) option remember; `if`(n<4, [1, 2, 6, 20][n+1],
2*a(n-1) +2*a(n-2) +5*a(n-3))
end:
seq(a(n), n=0..40);
MATHEMATICA
Join[{1}, LinearRecurrence[{2, 2, 5}, {2, 6, 20}, 40]] (* Jean-François Alcover, May 29 2018 *)
CROSSREFS
Even bisection of main diagonal of A247706.
Sequence in context: A263900 A260696 A052958 * A177792 A193235 A199102
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 17 2014
STATUS
approved