login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052958 Expansion of g.f.: (1-x)/(1-3*x-2*x^3+2*x^4). 1
1, 2, 6, 20, 62, 194, 610, 1914, 6006, 18850, 59158, 185658, 582662, 1828602, 5738806, 18010426, 56523158, 177389882, 556712886, 1747164122, 5483225814, 17208323450, 54005872822, 169489741850, 531919420822, 1669353361210 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1029

Index entries for linear recurrences with constant coefficients, signature (3,0,2,-2).

FORMULA

a(n) = 3*a(n-1) + 2*a(n-3) - 2*a(n-4), with a(0)=1, a(1)=2, a(2)=6, a(3)=20.

a(n) = Sum_{alpha=RootOf(1-3*z-2*z^3+2*z^4)} (1/3259)*(491 + 503*alpha + 272*alpha^2 - 498*alpha^3)*alpha^(-1-n).

MAPLE

spec:= [S, {S=Sequence(Prod(Union(Prod(Z, Z), Sequence(Z)), Union(Z, Z)))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);

seq(coeff(series((1-x)/(1-3*x-2*x^3+2*x^4), x, n+1), x, n), n = 0..40); # G. C. Greubel, Oct 22 2019

MATHEMATICA

LinearRecurrence[{3, 0, 2, -2}, {1, 2, 6, 20}, 40] (* G. C. Greubel, Oct 22 2019 *)

PROG

(PARI) my(x='x+O('x^40)); Vec((1-x)/(1-3*x-2*x^3+2*x^4)) \\ G. C. Greubel, Oct 22 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/(1-3*x-2*x^3+2*x^4) )); // G. C. Greubel, Oct 22 2019

(Sage)

def A052958_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P((1-x)/(1-3*x-2*x^3+2*x^4)).list()

A052958_list(40) # G. C. Greubel, Oct 22 2019

(GAP) a:=[1, 2, 6, 20];; for n in [5..40] do a[n]:=3*a[n-1]+2*a[n-3] -2*a[n-4]; od; a; # G. C. Greubel, Oct 22 2019

CROSSREFS

Sequence in context: A132353 A263900 A260696 * A247076 A177792 A193235

Adjacent sequences:  A052955 A052956 A052957 * A052959 A052960 A052961

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 01:23 EST 2019. Contains 329963 sequences. (Running on oeis4.)