login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052956
a(n) = 2^n + Fibonacci(n+1).
1
2, 3, 6, 11, 21, 40, 77, 149, 290, 567, 1113, 2192, 4329, 8569, 16994, 33755, 67133, 133656, 266325, 531053, 1059522, 2114863, 4222961, 8434976, 16852241, 33675825, 67305282, 134535539, 268949685, 537702952, 1075088093, 2149661957
OFFSET
0,1
FORMULA
G.f.: (2 -3*x -x^2)/((1-2*x)*(1-x-x^2)).
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3).
a(n) = 2^n + Sum_{alpha=RootOf(-1+z+z^2)} (1 + 2*alpha)*alpha^(-1-n)/5.
MAPLE
spec:= [S, {S=Union(Sequence(Union(Prod(Z, Z), Z)), Sequence(Union(Z, Z)))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
with(combinat); seq(2^n + fibonacci(n+1), n=0..40); # G. C. Greubel, Oct 22 2019
MATHEMATICA
LinearRecurrence[{3, -1, -2}, {2, 3, 6}, 40] (* or *) Table[Fibonacci[n+1] + 2^n, {n, 0, 40}] (* G. C. Greubel, Oct 22 2019 *)
PROG
(PARI) vector(41, n, fibonacci(n) + 2^(n-1)) \\ G. C. Greubel, Oct 22 2019
(Magma) [2^n + Fibonacci(n+1): n in [0..40]]; // G. C. Greubel, Oct 22 2019
(Sage) [2^n + fibonacci(n+1) for n in (0..40)] # G. C. Greubel, Oct 22 2019
(GAP) List([0..40], n-> 2^n + Fibonacci(n+1) ); # G. C. Greubel, Oct 22 2019
CROSSREFS
Sequence in context: A371790 A306575 A006861 * A351972 A298118 A339292
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 05 2000
STATUS
approved