login
A339292
Number of essentially parallel achiral series-parallel networks with n elements and without multiple unit elements in parallel.
4
1, 0, 1, 2, 3, 6, 11, 21, 41, 79, 154, 304, 598, 1188, 2360, 4719, 9431, 18966, 38107, 76968, 155368, 314987, 638325, 1298379, 2640223, 5385737, 10984999, 22465570, 45945256, 94180208, 193076780, 396603802, 814838739, 1676975258, 3452212803, 7117242628
OFFSET
1,4
COMMENTS
See A339293 for additional details.
EXAMPLE
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(3) = 1: (o|oo).
a(4) = 2: (o|ooo), (oo|oo).
a(5) = 3: (o|oooo), (oo|ooo), (o|oo|oo).
a(6) = 6: (o|ooooo), (o|o(o|oo)o), (oo|oooo), (ooo|ooo), (o|oo|ooo), (oo|oo|oo).
PROG
(PARI) \\ here B(n) gives A339290 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
B(n, Z=x)={my(p=Z+O(x^2)); for(n=2, n, p = Z + (1 + Z)*x*Ser(EulerT( Vec(p^2/(1+p), -n) ))); p}
seq(n, Z=x)={my(q=subst(B((n+1)\2, Z), x, x^2), s=q^2/(1+q), p=Z+O(x^2), t=0); forstep(n=2, n, 2, t=q*(1 + p); p=Z + (1 + Z)*x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2, -n-1))) - t); Vec(p+O(x*x^n))}
CROSSREFS
Cf. A339158, A339289 (oriented), A339291, A339293, A339295 (unoriented).
Sequence in context: A052956 A351972 A298118 * A008930 A339151 A164362
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Dec 07 2020
STATUS
approved