The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052953 Expansion of 2*(1-x-x^2)/((1-x)*(1+x)*(1-2*x)). 7
 2, 2, 4, 6, 12, 22, 44, 86, 172, 342, 684, 1366, 2732, 5462, 10924, 21846, 43692, 87382, 174764, 349526, 699052, 1398102, 2796204, 5592406, 11184812, 22369622, 44739244, 89478486, 178956972, 357913942, 715827884, 1431655766, 2863311532 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n) = sum of absolute values of terms in the (n+1)-th row of the triangle in A108561; - Reinhard Zumkeller, Jun 10 2005 a(n) = A078008(n+1) + 2*(1 + n mod 2). - Reinhard Zumkeller, Jun 10 2005 Essentially the same as A128209. - R. J. Mathar, Jun 14 2008 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1024 Index entries for linear recurrences with constant coefficients, signature (2,1,-2). FORMULA G.f.: 2*(1-x-x^2)/((1-x^2)*(1-2*x)). a(n) = a(n-1) + 2*a(n-2) - 2. a(n) = 1 + Sum_{alpha=RootOf(-1+z+2*z^2)} (1 + 4*alpha)*alpha^(-1-n)/9. a(2n) = 2*a(n-1)-2, a(2n+1) = 2*a(2n). - Lee Hae-hwang, Oct 11 2002 From Paul Barry, May 24 2004: (Start) a(n) = A001045(n+1) + 1. a(n) = (2^(n+1) - (-1)^(n+1))/3 + 1. (End) E.g.f.: (2*exp(2*x) + 3*exp(x) + exp(-x))/3. - G. C. Greubel, Oct 21 2019 MAPLE spec:= [S, {S=Union(Sequence(Union(Prod(Union(Z, Z), Z), Z)), Sequence(Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20); seq((2^(n+1) +3 +(-1)^n)/3, n=0..40); # G. C. Greubel, Oct 21 2019 MATHEMATICA LinearRecurrence[{2, 1, -2}, {2, 2, 4}, 40] (* G. C. Greubel, Oct 22 2019 *) PROG (Sage) from sage.combinat.sloane_functions import recur_gen2; it = recur_gen2(1, 1, 1, 2); [next(it)+1 for i in range(0, 34)] # Zerinvary Lajos, Jul 06 2008 (Sage) [(2^(n+1) +3 +(-1)^n)/3 for n in (0..40)] # G. C. Greubel, Oct 21 2019 (PARI) vector(41, n, (2^n +3 -(-1)^n)/3 ) \\ G. C. Greubel, Oct 21 2019 (MAGMA) [(2^(n+1) +3 +(-1)^n)/3: n in [0..40]]; // G. C. Greubel, Oct 21 2019 (GAP) List([0..40], n-> (2^(n+1) +3 +(-1)^n)/3); # G. C. Greubel, Oct 21 2019 CROSSREFS Apart from initial term, equals A026644(n+1) + 2. Cf. A001045. Sequence in context: A216957 A122536 A238014 * A128209 A274935 A188538 Adjacent sequences:  A052950 A052951 A052952 * A052954 A052955 A052956 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS More terms from James A. Sellers, Jun 05 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 20:07 EDT 2020. Contains 337291 sequences. (Running on oeis4.)