login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052953
Expansion of 2*(1-x-x^2)/((1-x)*(1+x)*(1-2*x)).
7
2, 2, 4, 6, 12, 22, 44, 86, 172, 342, 684, 1366, 2732, 5462, 10924, 21846, 43692, 87382, 174764, 349526, 699052, 1398102, 2796204, 5592406, 11184812, 22369622, 44739244, 89478486, 178956972, 357913942, 715827884, 1431655766, 2863311532
OFFSET
0,1
COMMENTS
a(n) = sum of absolute values of terms in the (n+1)-th row of the triangle in A108561; - Reinhard Zumkeller, Jun 10 2005
a(n) = A078008(n+1) + 2*(1 + n mod 2). - Reinhard Zumkeller, Jun 10 2005
Essentially the same as A128209. - R. J. Mathar, Jun 14 2008
FORMULA
G.f.: 2*(1-x-x^2)/((1-x^2)*(1-2*x)).
a(n) = a(n-1) + 2*a(n-2) - 2.
a(n) = 1 + Sum_{alpha=RootOf(-1+z+2*z^2)} (1 + 4*alpha)*alpha^(-1-n)/9.
a(2n) = 2*a(n-1)-2, a(2n+1) = 2*a(2n). - Lee Hae-hwang, Oct 11 2002
From Paul Barry, May 24 2004: (Start)
a(n) = A001045(n+1) + 1.
a(n) = (2^(n+1) - (-1)^(n+1))/3 + 1. (End)
E.g.f.: (2*exp(2*x) + 3*exp(x) + exp(-x))/3. - G. C. Greubel, Oct 21 2019
MAPLE
spec:= [S, {S=Union(Sequence(Union(Prod(Union(Z, Z), Z), Z)), Sequence(Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
seq((2^(n+1) +3 +(-1)^n)/3, n=0..40); # G. C. Greubel, Oct 21 2019
MATHEMATICA
LinearRecurrence[{2, 1, -2}, {2, 2, 4}, 40] (* G. C. Greubel, Oct 22 2019 *)
PROG
(Sage) [(2^(n+1) +3 +(-1)^n)/3 for n in (0..40)] # G. C. Greubel, Oct 21 2019
(PARI) vector(41, n, (2^n +3 -(-1)^n)/3 ) \\ G. C. Greubel, Oct 21 2019
(Magma) [(2^(n+1) +3 +(-1)^n)/3: n in [0..40]]; // G. C. Greubel, Oct 21 2019
(GAP) List([0..40], n-> (2^(n+1) +3 +(-1)^n)/3); # G. C. Greubel, Oct 21 2019
CROSSREFS
Apart from initial term, equals A026644(n+1) + 2.
Cf. A001045.
Sequence in context: A216957 A122536 A238014 * A128209 A274935 A188538
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 05 2000
STATUS
approved