This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052950 Expansion of (2-3*x-x^2+x^3)/((1-x)*(1+x)*(1-2*x)). 6
 2, 1, 3, 4, 9, 16, 33, 64, 129, 256, 513, 1024, 2049, 4096, 8193, 16384, 32769, 65536, 131073, 262144, 524289, 1048576, 2097153, 4194304, 8388609, 16777216, 33554433, 67108864, 134217729, 268435456, 536870913, 1073741824, 2147483649 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Equals row sums of triangle A178616 but replacing the 2 with a 1. - Gary W. Adamson, May 30 2010 Inverse binomial transform is (-1)^n * a(n). - Michael Somos, Jun 03 2014 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1009 Index entries for linear recurrences with constant coefficients, signature (2,1,-2). FORMULA G.f.: (2-3*x-x^2+x^3)/((1-x^2)*(1-2*x)). a(n) = a(n-1) + 2*a(n-2) - 1. a(n) = 2^(n-1) + Sum_{alpha=RootOf(-1+z^2)} alpha^(-n)/2. From Paul Barry, Sep 18 2003: (Start) a(n) = (2^n + 1 + (-1)^n + 0^n)/2. E.g.f.: cosh(x)*(1+exp(x)). (End) a(2*n + 1) = 4 * a(2*n - 1) for all n in Z. a(2*n + 2) = 3*a(2*n + 1) + 2*a(2*n) if n>0. - Michael Somos, Jun 04 2014 EXAMPLE G.f. = 2 + x + 3*x^2 + 4*x^3 + 9*x^4 + 16*x^5 + 33*x^6 + 64*x^7 + 129*x^8 + ... MAPLE spec:= [S, {S=Union(Sequence(Prod(Sequence(Z), Z)), Sequence(Prod(Z, Z)))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20); seq(`if`(n=0, 2, (2^n +1 +(-1)^n)/2), n=0..40); # G. C. Greubel, Oct 21 2019 MATHEMATICA a[n_]:= (2^n +1 +(-1)^n +Boole[n==0])/2; (* Michael Somos, Jun 03 2014 *) a[n_]:= If[ n<0, (1-n)! SeriesCoefficient[Sinh[x] +Exp[x/2], {x, 0, 1-n}], n! SeriesCoefficient[Cosh[x](1+Exp[x]), {x, 0, n}]]; (* Michael Somos, Jun 04 2014 *) LinearRecurrence[{2, 1, -2}, {2, 1, 3, 4}, 40] (* G. C. Greubel, Oct 21 2019 *) PROG (PARI) {a(n)=(2^n+1+(-1)^n+(n==0))/2}; /* Michael Somos, Jun 03 2014 */ (MAGMA) [2] cat [(2^n +1 +(-1)^n)/2: n in [1..40]]; // G. C. Greubel, Oct 21 2019 (Sage) [2]+[(2^n +1 +(-1)^n)/2 for n in (1..40)] # G. C. Greubel, Oct 21 2019 (GAP) Concatenation([2], List([1..40], n-> (2^n +1 +(-1)^n)/2));  # G. C. Greubel, Oct 21 2019 CROSSREFS Cf. A178616. - Gary W. Adamson, May 30 2010 Sequence in context: A019612 A007444 A166476 * A086851 A001054 A218209 Adjacent sequences:  A052947 A052948 A052949 * A052951 A052952 A052953 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS More terms from James A. Sellers, Jun 05 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 17:18 EST 2019. Contains 329879 sequences. (Running on oeis4.)