login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052951
Expansion of (1 + x - 2*x^2)/(1 - 2*x)^2.
6
1, 5, 14, 36, 88, 208, 480, 1088, 2432, 5376, 11776, 25600, 55296, 118784, 253952, 540672, 1146880, 2424832, 5111808, 10747904, 22544384, 47185920, 98566144, 205520896, 427819008, 889192448, 1845493760, 3825205248, 7918845952
OFFSET
0,2
COMMENTS
Equals binomial transform of A042948 starting with "1": (1, 4, 5, 8, 9, 12, 13, ...) = terms > 0, == 0 or 1 mod 4. - Gary W. Adamson, Feb 07 2009
LINKS
O. Aichholzer, A. Asinowski, and T. Miltzow, Disjoint compatibility graph of non-crossing matchings of points in convex position, arXiv preprint arXiv:1403.5546 [math.CO], 2014.
Agustín Moreno Cañadas, Hernán Giraldo, Gabriel Bravo Rios, On the Number of Sections in the Auslander-Reiten Quiver of Algebras of Dynkin Type, Far East Journal of Mathematical Sciences (FJMS), Vol. 101, No. 8 (2017), pp. 1631-1654.
FORMULA
G.f.: (1+x-2*x^2)/(1-2*x)^2.
a(n) = 4*(a(n-1) - a(n-2)).
a(n) = (n+1)*2^n + 2^(n-1), n > 0.
a(n) = A118413(n+1,n-1) for n > 2. - Reinhard Zumkeller, Apr 27 2006
E.g.f.: (1/2)*(-1 + exp(2*x)*(3 + 4*x)). - Stefano Spezia, Oct 22 2019
From Amiram Eldar, Oct 01 2022: (Start)
Sum_{n>=0} 1/a(n) = 4*sqrt(2)*arcsinh(1) - 11/3.
Sum_{n>=0} (-1)^n/a(n) = 13/3 - 4*sqrt(2)*arccot(sqrt(2)). (End)
MAPLE
spec:= [S, {S=Prod(Union(Sequence(Union(Z, Z)), Z), Sequence(Union(Z, Z)))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
seq(`if`(n=0, 1, 2^(n-1)*(2*n+3)), n=0..40); # G. C. Greubel, Oct 21 2019
MATHEMATICA
CoefficientList[Series[(1+x-2*x^2)/(1-2*x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 22 2012 *)
LinearRecurrence[{4, -4}, {1, 5, 14}, 40] (* G. C. Greubel, Oct 21 2019 *)
PROG
(Magma) I:=[1, 5, 14]; [n le 3 select I[n] else 4*Self(n-1)-4*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jun 22 2012
(PARI) x='x+O('x^40); Vec((1+x-2*x^2)/(1-2*x)^2) \\ Altug Alkan, Mar 03 2018
(Sage) [1]+[2^(n-1)*(2*n+3) for n in (1..40)] # G. C. Greubel, Oct 21 2019
(GAP) Concatenation([1], List([1..40], n-> 2^(n-1)*(2*n+3) )); # G. C. Greubel, Oct 21 2019
CROSSREFS
Sequence in context: A193557 A187198 A097507 * A048745 A372304 A307462
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved