login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372304
Binomial transform of the Gray code sequence.
2
0, 1, 5, 14, 36, 92, 228, 536, 1200, 2608, 5624, 12224, 26920, 59824, 133024, 293504, 638816, 1367488, 2877728, 5962112, 12198000, 24748192, 50041312, 101366272, 206655440, 425423136, 885598720, 1863228544, 3953671808, 8436151552, 18042976640, 38567833600
OFFSET
0,3
COMMENTS
Also second binomial transform of A109629.
LINKS
Wikipedia, Gray code
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * A003188(k).
MAPLE
g:= proc(n) g(n):= Bits[Xor](n, iquo(n, 2)) end:
a:= n-> add(binomial(n, k)*g(k), k=0..n):
seq(a(n), n=0..40);
PROG
(Python)
from math import comb
def A372304(n): return sum(comb(n, k)*(k^k>>1) for k in range(n+1)) # Chai Wah Wu, May 02 2024
CROSSREFS
Sequence in context: A097507 A052951 A048745 * A307462 A292170 A224716
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 02 2024
STATUS
approved