OFFSET
0,12
COMMENTS
A deck has k suits of n cards each. The deck is shuffled and dealt into k hands of n cards each. A match occurs for every card in the i-th hand of suit i. T(n,k) is the number of ways of achieving no matches. The probability of no matches is T(n,k)/((n*k)!/n!^k).
T(n,k) is the maximal number of totally mixed Nash equilibria in games of k players, each with n+1 pure options.
LINKS
Jeremy Tan, Antidiagonals n = 0..32, flattened
Shalosh B. Ekhad, Christoph Koutschan and Doron Zeilberger, There are EXACTLY 1493804444499093354916284290188948031229880469556 Ways to Derange a Standard Deck of Cards (ignoring suits) [and many other such useful facts], arXiv:2101.10147 [math.CO], 2021.
S. Even and J. Gillis, Derangements and Laguerre polynomials, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 79, Issue 1, January 1976, pp. 135-143.
B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), pp. 107-118.
Jeremy Tan, Python program
Raimundas Vidunas, MacMahon's master theorem and totally mixed Nash equilibria, arXiv:1401.5400 [math.CO], 2014.
Raimundas Vidunas, Counting derangements and Nash equilibria, Ann. Comb. 21, No. 1, 131-152 (2017).
FORMULA
T(n,k) = (-1)^(n*k) * Integral_{x=0..oo} exp(-x)*L_n(x)^k dx, where L_n(x) is the Laguerre polynomial of degree n (Even and Gillis).
T(n,k) ~ A089759(n,k)/exp(n).
EXAMPLE
Square array T(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 0, 1, 2, 9, 44, ...
1, 0, 1, 10, 297, 13756, ...
1, 0, 1, 56, 13833, 6699824, ...
1, 0, 1, 346, 748521, 3993445276, ...
1, 0, 1, 2252, 44127009, 2671644472544, ...
1, 0, 1, 15184, 2750141241, 1926172117389136, ...
1, 0, 1, 104960, 178218782793, 1463447061709156064, ...
MAPLE
A:= (n, k)-> (-1)^(n*k)*int(exp(-x)*orthopoly[L](n, x)^k, x=0..infinity):
seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Aug 27 2024
MATHEMATICA
Table[Abs[Integrate[Exp[-x] LaguerreL[n, x]^(s-n), {x, 0, Infinity}]], {s, 0, 9}, {n, 0, s}] // Flatten
PROG
(Python) # See link.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Jeremy Tan, Apr 26 2024
STATUS
approved