OFFSET
2,2
COMMENTS
This sequence counts the number of permutations of size n written in one-line notation that avoid the pattern 1324 and have the 1 appearing before the n.
LINKS
Juan B. Gil, Oscar A. Lopez, and Michael D. Weiner, A positional statistic for 1324-avoiding permutations, arXiv:2311.18227 [math.CO], 2024.
FORMULA
G.f.: A(x) = (x*(B(x)-2))/(3-B(x)), where B(x) is the g.f. for A000139. (See arxiv paper by Gil, Lopez, Weiner.)
G.f. satisfies 0 = x^4*(8*x-1) + x^2*(9*x-1)*(4*x-1)*A(x) + x*(6*x-1)*(9*x-2)*A(x)^2 + (27*x^2-9*x+1)*A(x)^3.
a(n) ~ 3^(3*n - 9/2) / (sqrt(Pi) * n^(5/2) * 2^(2*n - 5)). - Vaclav Kotesovec, Jul 06 2024
D-finite with recurrence 4*(n-1)*(2*n-5)*a(n) -6*(n-2)*(23*n-63)*a(n-1) +9*(99*n^2-567*n+818)*a(n-2) +81*(-31*n^2+215*n-374)*a(n-3) +243*(3*n-13)*(3*n-14)*a(n-4)=0. - R. J. Mathar, Sep 27 2024
EXAMPLE
For n=4, a(4)=11 is counting the permutations (in one-line notation): 1234, 1243, 1342, 1423, 1432, 2134, 2143, 2314, 3124, 3142, 3214.
MAPLE
f:= proc(n) f(n):= 2*(3*n)!/((2*n+1)!*(n+1)!) end:
a:= proc(n) option remember; `if`(n=1, 1,
add(a(n-i)*f(i), i=1..n))
end:
seq(a(n), n=2..26); # Alois P. Heinz, Apr 26 2024
MATHEMATICA
a[1] = 1; a[n_] := a[n] = 2*Sum[a[n-k]*(3*k)!/((2*k + 1)!*(k+1)!), {k, 1, n-1}]; Table[a[n], {n, 2, 30}] (* Vaclav Kotesovec, Jul 06 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael D. Weiner, Apr 26 2024
STATUS
approved