login
A372313
Table read by antidiagonals: A(n,1) = 2n-1, and for k > 1, A(n,k) = A372289(A(n,k-1)+A(n,1)).
0
1, 5, 3, 13, 13, 5, 29, 341, 21, 7, 61, 2773, 53, 29, 9, 125, 22229, 117, 149, 37, 11, 253, 177877, 245, 629, 93, 45, 13, 509, 1423061, 501, 2549, 205, 469, 53, 15, 1021, 11384533, 1013, 10229, 429, 15701, 133, 61, 17, 2045, 91076309, 2037, 40949, 877, 503125, 293, 309, 69, 19
OFFSET
1,2
COMMENTS
Conjecture: if A(n,1) is congruent to 33 (mod 100), then all terms on the n-th row are congruent to 33 (mod 100).
EXAMPLE
A(3,1) = 5. A(3,2) = A372289(5+5) = 21. A(3,3) = A372289(21+5) = 53. A(3,4) = A372289(53+5) = 117.
Table begins:
1, 5, 13, 29, 61, 125, 253, 509, ...
3, 13, 341, 2773, 22229, 177877, 1423061, 11384533, ...
5, 21, 53, 117, 245, 501, 1013, 2037, ...
7, 29, 149, 629, 2549, 10229, 40949, 163829, ...
9, 37, 93, 205, 429, 877, 1773, 3565, ...
11, 45, 469, 15701, 503125, 16100693, 515222869, 16487132501, ...
13, 53, 133, 293, 613, 1253, 2533, 5093, ...
15, 61, 309, 1301, 5269, 21141, 84629, 338581, ...
17, 69, 173, 381, 797, 1629, 3293, 6621, ...
19, 77, 3413, 27477, 219989, 1760085, 14080853, 112646997, ...
CROSSREFS
Sequence in context: A111744 A083781 A349156 * A206435 A080797 A376975
KEYWORD
nonn,tabl
AUTHOR
Ali Sada, Apr 26 2024
STATUS
approved