login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372316
Expansion of e.g.f. exp( x - LambertW(-3*x)/3 ).
4
1, 2, 10, 125, 2644, 77597, 2904382, 132169403, 7083715240, 437031850841, 30506442905194, 2377038378159359, 204521399708464252, 19259006462435865413, 1970114326513629358654, 217556451608123850352523, 25794252755430105917806288, 3268152272130255473300883377
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = Sum_{k=0..n} (3*k+1)^(k-1) * binomial(n,k).
G.f.: Sum_{k>=0} (3*k+1)^(k-1) * x^k / (1-x)^(k+1).
a(n) ~ 3^(n-1) * n^(n-1) * exp((exp(-1) + 1)/3). - Vaclav Kotesovec, May 04 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-3*x)/3)))
(PARI) a(n) = sum(k=0, n, (3*k+1)^(k-1)*binomial(n, k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 27 2024
STATUS
approved