login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360193
a(n) = Sum_{k=0..n} (k-1)^(k-1) * binomial(n,k).
6
-1, 0, 2, 9, 52, 445, 5166, 75019, 1300776, 26167257, 598577770, 15337224991, 435020120316, 13529095809541, 457727913937854, 16736043791509995, 657590281425958096, 27631245762003186865, 1236355641557737359570, 58689534518861119967287
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: -exp(x + LambertW(-x)).
E.g.f.: x * exp(x) / LambertW(-x).
a(n) ~ exp(exp(-1)-1) * n^(n-1). - Vaclav Kotesovec, Mar 06 2023
PROG
(PARI) a(n) = sum(k=0, n, (k-1)^(k-1)*binomial(n, k));
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(-exp(x+lambertw(-x))))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(x*exp(x)/lambertw(-x)))
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Mar 05 2023
STATUS
approved