login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360191
G.f. 1 / Product_{n>=1} (1 - x^n)^3 * (1 - x^(2*n-1))^2.
4
1, 5, 18, 55, 149, 371, 867, 1923, 4086, 8374, 16634, 32152, 60669, 112041, 202943, 361200, 632647, 1091917, 1859225, 3126242, 5195715, 8541624, 13899866, 22404091, 35787815, 56683294, 89061028, 138872410, 214984454, 330532633, 504869316, 766357010, 1156355165
OFFSET
0,2
COMMENTS
Self-convolution inverse of A080332.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(!) A(x) = 1 / [Product_{n>=1} (1 - x^n)^3 * (1 - x^(2*n-1))^2].
(2) A(x) = 1 / [Sum_{n=-oo..+oo} (6*n + 1) * x^(n*(3*n + 1)/2)].
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (12*sqrt(2)*n^(3/2)). - Vaclav Kotesovec, Feb 07 2023
EXAMPLE
G.f.: A(x) = 1 + 5*x + 18*x^2 + 55*x^3 + 149*x^4 + 371*x^5 + 867*x^6 + 1923*x^7 + 4086*x^8 + 8374*x^9 + 16634*x^10 + 32152*x^11 + 60669*x^12 + ...
MATHEMATICA
nmax = 30; CoefficientList[Series[1/Product[(1 - x^k)^3 * (1 - x^(2*k-1))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 07 2023 *)
nmax = 30; CoefficientList[Series[1/(QPochhammer[x] * EllipticTheta[4, 0, x]^2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 07 2023 *)
PROG
(PARI) {a(n) = polcoeff( 1/prod(m=1, n, (1 - x^m)^3 * (1 - x^(2*m-1))^2 +x*O(x^n)), n)}
for(n=0, 32, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 29 2023
STATUS
approved