login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. 1 / Product_{n>=1} (1 - x^n)^3 * (1 - x^(2*n-1))^2.
4

%I #12 Mar 19 2023 14:40:41

%S 1,5,18,55,149,371,867,1923,4086,8374,16634,32152,60669,112041,202943,

%T 361200,632647,1091917,1859225,3126242,5195715,8541624,13899866,

%U 22404091,35787815,56683294,89061028,138872410,214984454,330532633,504869316,766357010,1156355165

%N G.f. 1 / Product_{n>=1} (1 - x^n)^3 * (1 - x^(2*n-1))^2.

%C Self-convolution inverse of A080332.

%H Vaclav Kotesovec, <a href="/A360191/b360191.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.

%F (!) A(x) = 1 / [Product_{n>=1} (1 - x^n)^3 * (1 - x^(2*n-1))^2].

%F (2) A(x) = 1 / [Sum_{n=-oo..+oo} (6*n + 1) * x^(n*(3*n + 1)/2)].

%F a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (12*sqrt(2)*n^(3/2)). - _Vaclav Kotesovec_, Feb 07 2023

%e G.f.: A(x) = 1 + 5*x + 18*x^2 + 55*x^3 + 149*x^4 + 371*x^5 + 867*x^6 + 1923*x^7 + 4086*x^8 + 8374*x^9 + 16634*x^10 + 32152*x^11 + 60669*x^12 + ...

%t nmax = 30; CoefficientList[Series[1/Product[(1 - x^k)^3 * (1 - x^(2*k-1))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Feb 07 2023 *)

%t nmax = 30; CoefficientList[Series[1/(QPochhammer[x] * EllipticTheta[4, 0, x]^2), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Feb 07 2023 *)

%o (PARI) {a(n) = polcoeff( 1/prod(m=1,n, (1 - x^m)^3 * (1 - x^(2*m-1))^2 +x*O(x^n)), n)}

%o for(n=0,32,print1(a(n),", "))

%Y Cf. A080332, A361535, A361050, A361550.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jan 29 2023