login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344847
Sum of the prime numbers in, but not on the border of, an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows.
0
0, 0, 5, 18, 56, 80, 192, 306, 566, 731, 1273, 1433, 2123, 3023, 3762, 5128, 6604, 7038, 9694, 11735, 13942, 16695, 21015, 22027, 28292, 31972, 37830, 41516, 50405, 51983, 64936, 70032, 80537, 90331, 100611, 108869, 130965, 134475, 149660, 165879, 191969, 196185, 223782
OFFSET
1,3
FORMULA
a(n) = (Sum_{k=1..n^2} k * c(k)) - (Sum_{k=1..n} (n^2-k+1) * c(n^2-k+1) + k * c(k)) - (Sum_{k=1..n-2} (n*k+1) * c(n*k+1)), where c(n) is the prime characteristic.
EXAMPLE
[1 2 3 4 5]
[1 2 3 4] [6 7 8 9 10]
[1 2 3] [5 6 7 8] [11 12 13 14 15]
[1 2] [4 5 6] [9 10 11 12] [16 17 18 19 20]
[1] [3 4] [7 8 9] [13 14 15 16] [21 22 23 24 25]
------------------------------------------------------------------------
n 1 2 3 4 5
------------------------------------------------------------------------
a(n) 0 0 5 18 56
------------------------------------------------------------------------
MATHEMATICA
Table[Sum[i (PrimePi[i] - PrimePi[i - 1]), {i, n^2}] - Sum[(n^2 - k + 1) (PrimePi[n^2 - k + 1] - PrimePi[n^2 - k]) + k (PrimePi[k] - PrimePi[k - 1]), {k, n}] - Sum[(n*j + 1) (PrimePi[n*j + 1] - PrimePi[n*j]), {j, n - 2}], {n, 60}]
CROSSREFS
Cf. A010051, A344316, A344846 (sum of primes on border).
Sequence in context: A011845 A099450 A360191 * A145129 A001793 A325919
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 29 2021
STATUS
approved