login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344849
a(n) is the numerator of Catalan-Daehee number d(n).
1
1, 1, 7, 20, 313, 344, 24634, 86008, 183349, 3301264, 132174038, 69326344, 3332927794, 17361255440, 108222173516, 406589577424, 26070625295573, 8970328188896, 55462481190898, 1055714050810664, 2169454884422962, 91277283963562352, 8046203518285051612, 686567135431420560
OFFSET
0,3
LINKS
Dae San Kim and Taekyun Kim, A new approach to Catalan numbers using differential equations, Russ. J. Math. Phys. 24, 465-475 (2017).
Taekyun Kim and Dae San Kim, Some identities of Catalan-Daehee polynomials arising from umbral calculus, Appl. Comput. Math. 16 (2017), no. 2, 177-189.
Yuankui Ma, Taekyun Kim, Dae San Kim and Hyunseok Lee, Study on q-analogues of Catalan-Daehee numbers and polynomials, arXiv:2105.12013 [math.NT], 2021.
FORMULA
G.f. of d(n): log(1 - 4*x)/(2*(sqrt(1 - 4*x) - 1)).
a(n) = numerator(d(n)), where d(n) = 4^n/(n + 1) - Sum_{m=0..n-1} 4^(n-m-1)*C(m)/(n - m) with d(0) = 1 and C(m) is the m-th Catalan number.
MATHEMATICA
nmax:=24; a[n_]:=Numerator[Coefficient[Series[Log[1-4x]/(2(Sqrt[1-4x]-1)), {x, 0, nmax}], x, n]]; Array[a, nmax, 0] (* or *)
a[n_]:=Numerator[If[n==0, 1, 4^n/(n+1)-Sum[4^(n-m-1)CatalanNumber[m]/(n-m), {m, 0, n-1}]]]; Array[a, 24, 0]
CROSSREFS
Cf. A000108, A000302, A014973 (denominators of Daehee numbers), A343206, A344850 (denominators).
Sequence in context: A299800 A299676 A300308 * A216457 A266048 A233331
KEYWORD
nonn,frac
AUTHOR
Stefano Spezia, May 30 2021
STATUS
approved