login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343206
Numerators of Daehee numbers.
3
1, -1, 2, -3, 24, -20, 720, -630, 4480, -36288, 3628800, -3326400, 479001600, -444787200, 5811886080, -81729648000, 20922789888000, -19760412672000, 6402373705728000, -6082255020441600, 115852476579840000, -2322315553259520000, 1124000727777607680000, -1077167364120207360000
OFFSET
0,3
LINKS
Dae San Kim and Taekyun Kim, Daehee Numbers and polynomials, arXiv:1309.2109 [math.NT], 2013.
Dae San Kim and Taekyun Kim, Daehee numbers and polynomials, Applied Mathematical Sciences, Vol. 7, 2013, no. 120, 5969-5976.
FORMULA
D(n) = Sum_{i=0..n} Stirling1(n, i)*Bernoulli(i).
E.g.f. for D(n): log(1+x)/x.
D(n) = a(n)/A014973(n+1).
a(n) = numerator((-1)^n*n!/(n+1)). - Stefano Spezia, Jun 24 2024
EXAMPLE
1, -1/2, 2/3, -3/2, 24/5, -20, 720/7, -630, 4480, -36288, 3628800/11, -3326400, 479001600/13, -444787200, ...
MATHEMATICA
a[n_]:=Numerator[(-1)^n*n!/(n+1)]; Array[a, 24, 0] (* Stefano Spezia, Jun 24 2024 *)
PROG
(PARI) a(n) = numerator(sum(i=0, n, stirling(n, i, 1)*bernfrac(i)));
(PARI) my(x='x+O('x^30), v=Vec(serlaplace(log(1+x)/x))); apply(numerator, v)
(Python)
from sympy.functions.combinatorial.numbers import stirling, bernoulli
def A343206(n): return sum(stirling(n, i, signed=True)*bernoulli(i) for i in range(n+1)).p # Chai Wah Wu, Apr 08 2021
CROSSREFS
Cf. A008275 (Stirling1), A027641/A027642 (Bernoulli).
Cf. A014973 (denominators).
Sequence in context: A160606 A099617 A092043 * A055067 A037319 A032811
KEYWORD
sign,frac
AUTHOR
Michel Marcus, Apr 08 2021
STATUS
approved