OFFSET
1,3
COMMENTS
Numerator of expansion of dilog(x) = Li_2(x) = -Integral_{t=0..x} (log(1-t)/t)*dt. See the Weisstein link.
E.g.f. of {a(n)/A014973(n)}_{n>=1} is Li_2(x) (with 0 for n=0).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
A. N. Kirillov, Dilogarithm identities, arXiv:hep-th/9408113, 1994.
Eric Weisstein's World of Mathematics, Dilogarithm
FORMULA
From Wolfdieter Lang, Apr 28 2017: (Start)
a(n) = numerator(n!/n^2) = numerator((n-1)!/n), n >= 1. See the name.
E.g.f. {a(n)/A014973(n)}_{n>=1} with 0 for n=0 is Li_2(x). See the comment.
(-1)^n*a(n+1)/A014973(n+1) = (-1)^n*n!/(n+1) = Sum_{k=0..n} Stirling1(n, k)*Bernoulli(k), with Stirling1 = A048994 and Bernoulli(k) = A027641(k)/A027642(k), n >= 0. From inverting the formula for B(k) in terms of Stirling2 = A048993.(End)
From Wolfdieter Lang, Oct 26 2022: (Start)
The expansion of (1+x)*exp(x) has coefficients A014973(n+1)/a(n+1), for n >= 0. (End)
MATHEMATICA
Table[Numerator[n!/n^2], {n, 1, 40}] (* Vincenzo Librandi, Apr 15 2014 *)
Table[(n-1)!/n, {n, 30}]//Numerator (* Harvey P. Dale, Apr 03 2018 *)
PROG
(PARI) a(n)=numerator(n!/n^2)
(PARI) a(n)=numerator(polcoeff(serlaplace(dilog(x)), n))
(Magma) [Numerator(Factorial(n)/n^2): n in [1..30]]; // Vincenzo Librandi, Apr 15 2014
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
Ralf Stephan, Mar 28 2004
EXTENSIONS
Comment rewritten by Wolfdieter Lang, Apr 28 2017
STATUS
approved