login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055067
Product of numbers < n which do not divide n (or 1 if no such numbers exist).
7
1, 1, 2, 3, 24, 20, 720, 630, 13440, 36288, 3628800, 277200, 479001600, 444787200, 5811886080, 20432412000, 20922789888000, 1097800704000, 6402373705728000, 304112751022080, 115852476579840000, 2322315553259520000
OFFSET
1,3
LINKS
FORMULA
a(n) = A000142(n)/A007955(n).
EXAMPLE
a(5)=2*3*4=24, a(6)=4*5=20.
MATHEMATICA
Table[Apply[Times, Complement[Range[n], Divisors[n]]], {n, 1, 20}] (* Geoffrey Critzer, Dec 13 2014 *)
a[n_] := n!/n^(DivisorSigma[0, n]/2); Array[a, 25] (* Amiram Eldar, Jun 26 2022 *)
PROG
(Haskell)
a055067 n = product [k | k <- [1..n], mod n k /= 0]
-- Reinhard Zumkeller, Feb 06 2012
(PARI) a(n) = n!/vecprod(divisors(n)); \\ Michel Marcus, Dec 26 2021
(Python)
from math import factorial, isqrt
from sympy import divisor_count
def A055067(n): return factorial(n)//(isqrt(n)**c if (c:=divisor_count(n)) & 1 else n**(c//2)) # Chai Wah Wu, Jun 25 2022
CROSSREFS
Cf. A024816.
Sequence in context: A099617 A092043 A343206 * A037319 A032811 A092049
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jun 12 2000
EXTENSIONS
More terms from David Wasserman, Mar 15 2002
STATUS
approved