login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099617
Denominators of the coefficients in the Taylor expansion of sec(x) + tan(x) around x=0.
6
1, 1, 2, 3, 24, 15, 720, 315, 8064, 2835, 3628800, 155925, 95800320, 6081075, 87178291200, 638512875, 4184557977600, 10854718875, 6402373705728000, 1856156927625, 97316080327065600, 194896477400625, 1124000727777607680000, 2900518163668125, 9545360026665222144000
OFFSET
0,3
LINKS
L. Euler, On the sums of series of reciprocals, par. 13, arXiv:math/0506415 [math.HO], 2005-2008.
L. Euler, De summis serierum reciprocarum, E41, par. 13.
FORMULA
A099612(n)/a(n) = A000111(n)/n!. - Seiichi Manyama, Jan 27 2017
From Peter Luschny, Aug 03 2017: (Start)
a(n) = denominator(2*i^(n+1)*PolyLog(-n, -i)/n!) for n > 0.
a(n) = denominator(2^n*|Euler(n,1/2) - Euler(n,1)|/n!) for n > 0 where Euler(n,x) are the Euler polynomials. (End)
Conjecture: For n >= 0, (-1)^n * a(n+1)/(n+1) is the denominator of the n-th term of the Taylor expansion of 1/(1 + sin(x)) around x = 0. [This is based on the fact that (sec(x) + tan(x))' = 1/(1 + sin(-x)). Cf. also the comments in A099612 and A279107.] - Petros Hadjicostas, Oct 06 2019
EXAMPLE
1 + x + (1/2)*x^2 + (1/3)*x^3 + (5/24)*x^4 + (2/15)*x^5 + (61/720)*x^6 + (17/315)*x^7 + ...
1, 1, 1/2, 1/3, 5/24, 2/15, 61/720, 17/315, 277/8064, 62/2835, 50521/3628800, 1382/155925, 540553/95800320, ... = A099612/A099617
MAPLE
# From Peter Luschny, Aug 03 2017: (Start)
S := proc(n, k) option remember; if k = 0 then `if`(n = 0, 1, 0) else
S(n, k - 1) + S(n - 1, n - k) fi end: A099617 := n -> denom(S(n, n)/n!):
seq(A099617(n), n=0..24); # version 1
P := proc(n, x) local k, j; add(add((-1)^j*2^(-k)*binomial(k, j)
*(k-2*j)^n* x^(n-k), j=0..k), k=0..n) end: R := n -> `if`(n = 0, 1, P(n-1, -I)/ n!): seq(denom(R(n)), n=0..24); # version 2
ep := n -> `if`(n=0, 1, 2^n*abs(euler(n, 1/2) - euler(n, 1))):
a := n -> denom(ep(n)/n!): seq(a(n), n=0..24); # version 3 (End)
MATHEMATICA
nn = 24; Denominator[CoefficientList[Series[Sec[x] + Tan[x], {x, 0, nn}], x]] (* T. D. Noe, Jul 24 2013 *)
Table[If[n==0, 1, 2 I ^(n+1) PolyLog[-n, -I] / n!], {n, 0, 24}] // Denominator (* Peter Luschny, Aug 03 2017 *)
Table[2 (1 + Mod[n, 2]) LerchPhi[(-1)^(n+1), n+1, 1/2] / Pi^(n+1), {n, 0, 24}] // Denominator (* Peter Luschny, Aug 03 2017 *)
CROSSREFS
Sequence in context: A119619 A170909 A160606 * A092043 A343206 A055067
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Nov 19 2004
STATUS
approved