The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A119619 a(n) = Product_{i=1..n} i / gcd(i,n). 4
 1, 1, 2, 3, 24, 10, 720, 315, 4480, 4536, 3628800, 11550, 479001600, 13899600, 43051008, 638512875, 20922789888000, 1905904000, 6402373705728000, 118794043368, 68108451840000, 4535772564960000, 1124000727777607680000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS If p is prime, then a(p) = (p-1)!. - Stefan Steinerberger, Jun 08 2006 LINKS FORMULA a(n) = Product_{d|n} pxi(d), where pxi(m) = is the product of totatives of m (A001783). - Jaroslav Krizek, Dec 28 2016 MAPLE a:=n->mul(numer (k/n), k=1..n): seq(a(n), n=1..23); # Zerinvary Lajos, Apr 26 2008 MATHEMATICA a[n_] := Product[i/GCD[i, n], {i, 1, n}]; Table[a[n], {n, 1, 30}] (* Stefan Steinerberger, Jun 08 2006 *) Table[Product[Times @@ Select[Range@ d, CoprimeQ[#, d] &], {d, Divisors@ n}], {n, 23}] (* Michael De Vlieger, Dec 28 2016 *) PROG (PARI) a(n) = prod(i=1, n, i/gcd(i, n)) (MAGMA) [&*[&*[h: h in [1..d] | GCD(h, d) eq 1]: d in Divisors(n)]: n in [1..100]]; // Jaroslav Krizek, Dec 28 2016 CROSSREFS Cf. A067911. Sequence in context: A308943 A061098 A160630 * A170909 A160606 A099617 Adjacent sequences:  A119616 A119617 A119618 * A119620 A119621 A119622 KEYWORD nonn AUTHOR Martin Fuller, Jun 06 2006 EXTENSIONS More terms from Stefan Steinerberger, Jun 08 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 22:15 EDT 2021. Contains 343992 sequences. (Running on oeis4.)