login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119621
Wolstenholme numbers A007406 ( numerator of Sum 1/k^2, k = 1..(p-1)/2 ) divided by prime p>3.
0
1, 7, 479, 413, 63397, 514639, 10410343, 1411432849, 6620481151, 6454614084953, 421950627598601, 8222379104323, 3989306589962303, 443539778381788333, 148124338024667050948691, 143366612154851808752629
OFFSET
3,2
COMMENTS
Wolstenholme numbers A007406(n) (numerator of Sum 1/k^2, k = 1..n) are divisible by prime p > 3 for n = (p-1)/2. a(n) = A007406((p-1)/2) / p, where p = Prime[n] > 3.
FORMULA
a(n) = numerator[ Sum[ 1/i^2, {i,1,(Prime[n]-1)/2} ] ] / Prime[n] for n > 3.
EXAMPLE
A007406(n) begins 1, 5, 49, 205, 5269, 5369, 266681, 1077749, 9778141,..
a(3) = A007406( (5-1)/2 ) / 5 = 1
a(4) = A007406( (7-1)/2 ) / 7 = 49 / 7 = 7
a(5) = A007406( (11-1)/2 ) / 11 = 5269 / 11 = 479
MATHEMATICA
Table[Numerator[Sum[1/i^2, {i, 1, (Prime[n]-1)/2}]]/Prime[n], {n, 3, 25}]
CROSSREFS
Cf. A007406.
Sequence in context: A261806 A332147 A278143 * A142734 A120773 A116167
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Jun 07 2006
STATUS
approved