login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119623
Composite numbers for which the second elementary symmetric function of divisors (s2) is prime.
0
6, 10, 14, 26, 34, 62, 82, 122, 142, 146, 202, 206, 226, 254, 334, 346, 362, 394, 446, 542, 562, 566, 586, 734, 766, 794, 842, 926, 934, 982, 1046, 1126, 1286, 1294, 1346, 1382, 1514, 1546, 1594, 1622, 1654, 1706, 1766, 1906, 1934
OFFSET
1,1
COMMENTS
Terms in A119616 are always prime if n is prime p and s2(p)=p, hence it is interesting to find composite numbers for which s2 is also prime. Relative values of s2 are: s2=47,97,163,457,733,2203,3733,7993,10723,11317,21313,22147,26557,33403,57283,61417,67153,79393,101467,149323,160453,162727,174337,272683,296827,318793,358273,432907,440383,486583,551767,639007,832687,843043,911917,961183,1152913,1202017,1277593,1322743,1375303,1462897,1567327,1824997,1878883. Otherwise the sequence s2 gives numbers which appear in A119616 at least twice (and conjecture is that exactly twice).
MATHEMATICA
dv:=Divisors[n]; le:=Length[dv]; re=Reap[Do[If[ !PrimeQ[n], su=Sum[dv[[i]]*dv[[i+j]], {i, 1, le-1}, {j, 1, le-i}]; If[PrimeQ[su], Sow[{n, su}]]], {n, 2, 2000}]][[2, 1]]
CROSSREFS
Cf. A119616.
Sequence in context: A315237 A315238 A315239 * A129119 A259020 A259021
KEYWORD
nonn
AUTHOR
Zak Seidov, Jun 08 2006
STATUS
approved