login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000111
Euler or up/down numbers: e.g.f. sec(x) + tan(x). Also for n >= 2, half the number of alternating permutations on n letters (A001250).
(Formerly M1492 N0587)
336
1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792, 2702765, 22368256, 199360981, 1903757312, 19391512145, 209865342976, 2404879675441, 29088885112832, 370371188237525, 4951498053124096, 69348874393137901, 1015423886506852352, 15514534163557086905, 246921480190207983616, 4087072509293123892361
OFFSET
0,4
COMMENTS
Number of linear extensions of the "zig-zag" poset. See ch. 3, prob. 23 of Stanley. - Mitch Harris, Dec 27 2005
Number of increasing 0-1-2 trees on n vertices. - David Callan, Dec 22 2006
Also the number of refinements of partitions. - Heinz-Richard Halder (halder.bichl(AT)t-online.de), Mar 07 2008
The ratio a(n)/n! is also the probability that n numbers x1,x2,...,xn randomly chosen uniformly and independently in [0,1] satisfy x1 > x2 < x3 > x4 < ... xn. - Pietro Majer, Jul 13 2009
For n >= 2, a(n-2) = number of permutations w of an ordered n-set {x_1 < ... x_n} with the following properties: w(1) = x_n, w(n) = x_{n-1}, w(2) > w(n-1), and neither any subword of w, nor its reversal, has the first three properties. The count is unchanged if the third condition is replaced with w(2) < w(n-1). - Jeremy L. Martin, Mar 26 2010
A partition of zigzag permutations of order n+1 by the smallest or the largest, whichever is behind. This partition has the same recurrent relation as increasing 1-2 trees of order n, by induction the bijection follows. - Wenjin Woan, May 06 2011
As can be seen from the asymptotics given in the FORMULA section, one has lim_{n->oo} 2*n*a(n-1)/a(n) = Pi; see A132049/A132050 for the simplified fractions. - M. F. Hasler, Apr 03 2013
a(n+1) is the sum of row n in triangle A008280. - Reinhard Zumkeller, Nov 05 2013
M. Josuat-Verges, J.-C. Novelli and J.-Y. Thibon (2011) give a far-reaching generalization of the bijection between Euler numbers and alternating permutations. - N. J. A. Sloane, Jul 09 2015
Number of treeshelves avoiding pattern T321. Treeshelves are ordered binary (0-1-2) increasing trees where every child is connected to its parent by a left or a right link, see A278678 for more definitions and examples. - Sergey Kirgizov, Dec 24 2016
Number of sequences (e(1), ..., e(n-1)), 0 <= e(i) < i, such that no three terms are equal. [Theorem 7 of Corteel, Martinez, Savage, and Weselcouch] - Eric M. Schmidt, Jul 17 2017
Number of self-dual edge-labeled trees with n vertices under "mind-body" duality. Also number of self-dual rooted edge-labeled trees with n vertices. See my paper linked below. - Nikos Apostolakis, Aug 01 2018
The ratio a(n)/n! is the volume of the convex polyhedron defined as the set of (x_1,...,x_n) in [0,1]^n such that x_i + x_{i+1} <= 1 for every 1 <= i <= n-1; see the solutions by Macdonald and Nelsen to the Amer. Math. Monthly problem referenced below. - Sanjay Ramassamy, Nov 02 2018
Number of total cyclic orders on {0,1,...,n} such that the triple (i-1,i,i+1) is positively oriented for every 1 <= i <= n-1; see my paper on cyclic orders linked below. - Sanjay Ramassamy, Nov 02 2018
The number of binary, rooted, unlabeled histories with n+1 leaves (following the definition of Rosenberg 2006). Also termed Tajima trees, Tajima genealogies, or binary, rooted, unlabeled ranked trees (Palacios et al. 2015). See Disanto & Wiehe (2013) for a proof. - Noah A Rosenberg, Mar 10 2019
From Gus Wiseman, Dec 31 2019: (Start)
Also the number of non-isomorphic balanced reduced multisystems with n + 1 distinct atoms and maximum depth. A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. The labeled version is A006472. For example, non-isomorphic representatives of the a(0) = 1 through a(4) = 5 multisystems are (commas elided):
{1} {12} {{1}{23}} {{{1}}{{2}{34}}} {{{{1}}}{{{2}}{{3}{45}}}}
{{{12}}{{3}{4}}} {{{{1}}}{{{23}}{{4}{5}}}}
{{{{1}{2}}}{{{3}}{{45}}}}
{{{{1}{23}}}{{{4}}{{5}}}}
{{{{12}}}{{{3}}{{4}{5}}}}
Also the number of balanced reduced multisystems with n + 1 equal atoms and maximum depth. This is possibly the meaning of Heinz-Richard Halder's comment (see also A002846, A213427, A265947). The non-maximum-depth version is A318813. For example, the a(0) = 1 through a(4) = 5 multisystems are (commas elided):
{1} {11} {{1}{11}} {{{1}}{{1}{11}}} {{{{1}}}{{{1}}{{1}{11}}}}
{{{11}}{{1}{1}}} {{{{1}}}{{{11}}{{1}{1}}}}
{{{{1}{1}}}{{{1}}{{11}}}}
{{{{1}{11}}}{{{1}}{{1}}}}
{{{{11}}}{{{1}}{{1}{1}}}}
(End)
With s_n denoting the sum of n independent uniformly random numbers chosen from [-1/2,1/2], the probability that the closest integer to s_n is even is exactly 1/2 + a(n)/(2*n!). (See Hambardzumyan et al. 2023, Appendix B.) - Suhail Sherif, Mar 31 2024
The number of permutations of size n+1 that require exactly n passes through a stack (i.e. have reverse-tier n-1) with an algorithm that prioritizes outputting the maximum possible prefix of the identity in a given pass and reverses the remainder of the permutation for prior to the next pass. - Rebecca Smith, Jun 05 2024
REFERENCES
M. D. Atkinson: Partial orders and comparison problems, Sixteenth Southeastern Conference on Combinatorics, Graph Theory and Computing, (Boca Raton, Feb 1985), Congressus Numerantium 47, 77-88.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 34, 932.
L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 258-260, section #11.
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 262.
Bishal Deb and Alan D. Sokal, Classical continued fractions for some multivariate polynomials generalizing the Genocchi and median Genocchi numbers, arXiv:2212.07232, Dec 14 2022.
H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 66.
O. Heimo and A. Karttunen, Series help-mates in 8, 9 and 10 moves (Problems 2901, 2974-2976), Suomen Tehtavaniekat (Proceedings of the Finnish Chess Problem Society) vol. 60, no. 2/2006, pp. 75, 77.
S. K. Jha, A Congruence for the Number of Alternating Permutations, Missouri J. Math. Sci., 33 (No. 1, 2021), 99-104
L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 238.
S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 444.
E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 110.
C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 184.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1997 and Vol. 2, 1999; see Problem 5.7.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..485 (terms 0..199 from N. J. A. Sloane)
Désiré André, Mémoire sur les permutations alternées, J. Math. Pur. Appl., 7 (1881), 167-184.
Joerg Arndt, Matters Computational (The Fxtbook), pp. 281-282.
M. D. Atkinson, Zigzag permutations and comparisons of adjacent elements, Information Processing Letters 21 (1985), 187-189.
Stefano Barbero, Umberto Cerruti, and Nadir Murru, Some combinatorial properties of the Hurwitz series ring arXiv:1710.05665 [math.NT], 2017.
Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.
Jean-Luc Baril and José L. Ramírez, Some distributions in increasing and flattened permutations, arXiv:2410.15434 [math.CO], 2024. See p. 12.
B. Bauslaugh and F. Ruskey, Generating alternating permutations lexicographically, Nordisk Tidskr. Informationsbehandling (BIT) 30 16-26 1990.
F. Bergeron, M. Bousquet-Mélou, and S. Dulucq, Standard paths in the composition poset, Ann. Sci. Math. Quebec, 19 (1995), no. 2, 139-151.
O. Bodini, M. Dien, X. Fontaine, A. Genitrini and H. K. Hwang, Increasing Diamonds, in LATIN 2016: 12th Latin American Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings Pages pp 207-219 2016 DOI 10.1007/978-3-662-49529-2_16; Lecture Notes in Computer Science Series Volume 9644.
J. M. Borwein and S. T. Chapman, I Prefer Pi: A Brief History and Anthology of Articles in the American Mathematical Monthly, Amer. Math. Monthly, 122 (2015), 195-216.
Graham Brightwell, Gérard Cohen, Emanuela Fachini, Marianne Fairthorne, János Körner, Gábor Simonyi and Ágnes Tóth, Permutation capacities of families of oriented infinite paths, SIAM J. Discrete Math. 24 (2010), no. 2, 441-456.
Peter J. Cameron and Liam Stott, Trees and cycles, arXiv:2010.14902 [math.CO], 2020. See p. 12.
Lorenzo Cappello and Julia A. Palacios, Sequential importance sampling for multi-resolution Kingman-Tajima coalescent counting, arXiv:1902.05527 [stat.AP], 2019.
Swee Hong Chan and Igor Pak, Computational complexity of counting coincidences, arXiv:2308.10214 [math.CO], 2023. See p. 16.
Xiao-Min Chen, X.-K. Chang, J.-Q. Sun, X./-B. Hu and Y.-N. Yeh, Three semi-discrete integrable systems related to orthogonal polynomials and their generalized determinant solutions, Nonlinearity, Volume 28, Number 7, Jun 08 2015.
Suyoung Choi, B. Park and H. Park, The Betti numbers of real toric varieties associated to Weyl chambers of type B, arXiv preprint arXiv:1602.05406 [math.AT], 2016.
Suyoung Choi and Younghan Yoon, The cohomology rings of real permutohedral varieties, arXiv:2308.12693 [math.AT], 2023.
Sean Cleary, Mareike Fischer, Robert C. Griffiths and Raazesh Sainudiin, Some distributions on finite rooted binary trees, UCDMS Research Report NO. UCDMS2015/2, School of Mathematics and Statistics, University of Canterbury, Christchurch, NZ, 2015.
C. K. Cook, M. R. Bacon, and R. A. Hillman, Higher-order Boustrophedon transforms for certain well-known sequences, Fib. Q., 55(3) (2017), 201-208.
Jane Ivy Coons and Seth Sullivant, The Cavender-Farris-Neyman Model with a Molecular Clock, arXiv:1805.04175 [math.AG], 2018.
Jane Ivy Coons and Seth Sullivant, The h*-polynomial of the order polytope of the zig-zag poset, arXiv:1901.07443 [math.CO], 2019.
Sylvie Corteel, Megan A. Martinez, Carla D. Savage and Michael Weselcouch, Patterns in Inversion Sequences I, arXiv:1510.05434 [math.CO], 2015
Chandler Davis, Problem 4755, Amer. Math. Monthly, 64 (1957) 596; solution by W. J. Blundon, 65 (1958), 533-534. [Denoted by P_n in solution.]
Chandler Davis, Problem 4755: A Permutation Problem, Amer. Math. Monthly, 64 (1957) 596; solution by W. J. Blundon, 65 (1958), 533-534. [Denoted by P_n in solution.] [Annotated scanned copy]
Colin Defant and James Propp, Quantifying Noninvertibility in Discrete Dynamical Systems, arXiv:2002.07144 [math.CO], 2020.
Karel Devriendt, Renaud Lambiotte and Piet Van Mieghem, Constructing Laplacian matrices with Soules vectors: inverse eigenvalue problem and applications, arXiv:1909.11282 [physics.soc-ph], 2019.
Filippo Disanto and Thomas Wiehe, Some combinatorial problems on binary rooted trees occurring in population genetics, arXiv preprint arXiv:1112.1295 [math.CO], 2011.
Filippo Disanto and Thomas Wiehe, Exact enumeration of cherries and pitchforks in ranked trees under the coalescent model, Math. Biosci. 242 (2013), 195-200.
R. Donaghey, Alternating permutations and binary increasing trees, J. Combinatorial Theory Ser. A 18 (1975), 141--148.MR0360299 (50 #12749)
O. Dovgoshey, E. Petrov and H.-M. Teichert, On spaces extremal for the Gomory-Hu inequality, arXiv preprint arXiv:1412.1979 [math.AG], 2014.
D. Dumont and G. Viennot, A combinatorial interpretation of the Seidel generation of Genocchi numbers, Preprint, Annotated scanned copy.
Richard Ehrenborg and N. Bradley Fox, The Descent Set Polynomial Revisited, arXiv:1408.6858 [math.CO], 2014. See Table 4.
N. D. Elkies, On the sums Sum((4k+1)^(-n),k,-inf,+inf), arXiv:math/0101168 [math.CA], 2001-2003.
N. D. Elkies, On the sums Sum_{k = -infinity .. infinity} (4k+1)^(-n), Amer. Math. Monthly, 110 (No. 7, 2003), 561-573.
N. D. Elkies, New Directions in Enumerative Chess Problems, The Electronic Journal of Combinatorics, vol. 11(2), 2004.
Eugène Estanave, Sur les coefficients des développements en séries de tangx, sécx et d’autres fonctions. Leur expression à l’aide d’un déterminant unique, Bulletin de la Société Mathématique de France, Tome 31 (1903), pp. 203-208.
P. Flajolet, S. Gerhold and B. Salvy, On the non-holonomic character of logarithms, powers and the n-th prime function, arXiv:math/0501379 [math.CO], 2005.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009.
D. Foata and M.-P. Schutzenberger, Nombres d'Euler et permutations alternantes, in J. N. Srivastava et al., eds., A Survey of Combinatorial Theory (North Holland Publishing Company, Amsterdam, 1973), pp. 173-187.
Dominique Foata and Guo-Niu Han, Seidel Triangle Sequences and Bi-Entringer Numbers, November 20, 2013.
Jithin D. George, David I. Ketcheson and Randall J. LeVeque, A characteristics-based approximation for wave scattering from an arbitrary obstacle in one dimension, arXiv:1901.04158 [math.AP], 2019.
Claude Godrèche and Jean-Marc Luck, Records for the moving average of a time series, arXiv:1907.07598 [cond-mat.stat-mech], 2019.
W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 Mar 2013
Heinz-Richard Halder, Über Verfeinerungen von Partitionen, Periodica Mathematica Hungarica Vol. 12 (3), (1981), pp. 217-220.
L. Hambardzumyan, T. Pitassi, S. Sherif, M. Shirley and A. Shraibman, An improved protocol for ExactlyN with more than 3 players, arXiv:2309.06554 [cs.CC], 2023.
Guo-Niu Han, Hankel Continued fractions and Hankel determinants of the Euler numbers, arXiv:1906.00103 [math.CO], 2019.
F. Heneghan and T. K. Petersen, Power series for up-down min-max permutations, 2013.
Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
B. R. Jones, On tree hook length formulas, Feynman rules and B-series, Master's thesis, Simon Fraser University, 2014.
M. Josiat-Verges, Enumeration of snakes and cycle-alternating permutations, arXiv:1011.0929 [math.CO], 2010.
M. Josuat-Verges, J.-C. Novelli and J.-Y. Thibon, The algebraic combinatorics of snakes, arXiv preprint arXiv:1110.5272 [math.CO], 2011.
A. A. Kirillov, Variations on the triangular theme, Amer. Math. Soc. Transl., (2), Vol. 169, 1995, pp. 43-73, see p. 52.
Masato Kobayashi, A new refinement of Euler numbers on counting alternating permutations, arXiv:1908.00701 [math.CO], 2019.
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
Dmitry Kruchinin, Integer properties of a composition of exponential generating functions, arXiv:1211.2100 [math.NT], 2012.
Vladimir Victorovich Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
Daeseok Lee and H.-K. Ju, An Extension of Hibi's palindromic theorem, arXiv preprint arXiv:1503.05658 [math.CO], 2015.
Tamás Lengyel, A Note on a Permutation Statistic, J. Int. Seq., Vol. 22 (2019), Article 19.5.1.
F. Luca and P. Stanica, On some conjectures on the monotonicity of some arithmetical sequences, J. Combin. Number Theory 4 (2012) 1-10.
J. M. Luck, On the frequencies of patterns of rises and falls, arXiv preprint arXiv:1309.7764 [cond-mat.stat-mech], 2013.
Peter Luschny, An introduction to the Bernoulli function, arXiv:2009.06743 [math.HO], 2020.
I. G. Macdonald and R. B. Nelsen (independently), Solution to E2701, Amer. Math. Monthly, 86 (1979), 396.
Toufik Mansour, Howard Skogman and Rebecca Smith, Passing through a stack k times with reversals, arXiv:1808.04199 [math.CO], 2018.
J. L. Martin and J. D. Wagner, Updown numbers and the initial monomials of the slope variety, Electronic J. Combin. 16, no. 1 (2009), Research Paper R82. [From Jeremy L. Martin, Mar 26 2010]
Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
A. Mendes, A note on alternating permutations, Amer. Math. Monthly, 114 (2007), 437-440.
J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
A. Morales, I. Pak and G. Panova, Hook formulas for skew shapes I. q-analogues and bijections, arXiv preprint arXiv:1512.08348 [math.CO], 2015.
Alejandro H. Morales, I. Pak, and G. Panova, Why is pi < 2 phi?, Preprint, 2016.
F. Murtagh, Counting dendrograms: a survey, Discrete Applied Mathematics, 7 (1984), 191-199.
D. J. Newman, W. Weissblum and others, Problem 67-5: "Up-Down" Permutations, SIAM Review, Vol. 9, No. 1 (Jan., 1967), page 121, Vol. 11, No. 1 (Jan., 1969), p. 75, and Vol. 10, No. 2 (Apr., 1968), pp. 225-226. [Annotated scanned copy]
A. Niedermaier and J. Remmel, Analogues of Up-down Permutations for Colored Permutations, J. Int. Seq. 13 (2010), 10.5.6., C(t), D(t).
E. Norton, Symplectic Reflection Algebras in Positive Characteristic as Ore Extensions, arXiv preprint arXiv:1302.5411 [math.RA], 2013.
J. Palacios, J. Wakeley and S. Ramachandran, Bayesian nonparametric inference of population size changes from sequential genealogies, Genetics 201 (2015), 281-304.
Qiong Qiong Pan and Jiang Zeng, The gamma-coefficients of Branden's (p,q)-Eulerian polynomials and André permutations, arXiv:1910.01747 [math.CO], 2019.
S. Ramassamy, Modular periodicity of the Euler numbers and a sequence by Arnold, arXiv:1712.08666 [math.CO], 2017.
A. Randrianarivony and J. Zeng, Sur une extension des nombres d'Euler et les records des permutations alternantes, J. Combin. Theory Ser. A 68 (1994), 68-99.
A. Randrianarivony and J. Zeng, Une famille de polynomes qui interpole plusieurs suites..., Adv. Appl. Math. 17 (1996), 1-26.
Jeffrey B. Remmel, Generating functions for alternating descents and alternating major index, Ann. Comb. 16 (2012), no. 3, 625-650. MR2960023.
Y. Sano, The principal numbers of K. Saito for the types A_l, D_l and E_l, Discr. Math., 307 (2007), 2636-2642.
L. Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, vol. 7 (1877), 157-187.
B. Shapiro and A. Vainshtein, On the number of connected components in the space of M-polynomials in hyperbolic functions Adv. in Ap. Math., Vol. 30, Issues 1-2, Feb. 2003, pp. 273-282 (Added by Tom Copeland, Oct 04 2015)
Heesung Shin and Jiang Zeng, More bijections for Entringer and Arnold families, arXiv:2006.00507 [math.CO], 2020.
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
Alan D. Sokal, The Euler and Springer numbers as moment sequences, arXiv:1804.04498 [math.CO], 2018.
J. Staib, Trigonometric power series, Math. Mag., 49 (1976), 147-148.
R. P. Stanley, Queue problems revisited, Suomen Tehtavaniekat (Proceedings of the Finnish Chess Problem Society), vol. 59, no. 4 (2005), 193-203.
R. P. Stanley, Permutations
Yidong Sun and Liting Zhai, Some properties of a class of refined Eulerian polynomials, arXiv:1810.07956 [math.CO], 2018.
Zhi-Hong Sun, Congruences involving Bernoulli polynomials, Discr. Math., 308 (2007), 71-112.
Ross Tang, An Explicit Formula for the Euler zigzag numbers (Up/down numbers) from power series [From Ross Tang (ph.tchaa(AT)gmail.com), Jul 28 2010. Web page no longer accessible, pdf of archive.org version uploaded by Ralf Stephan, Dec 28 2013]
S. T. Thompson, Problem E754: Skew Ordered Sequences, Amer. Math. Monthly, 54 (1947), 416-417. [Annotated scanned copy]
A. Vieru, Agoh's conjecture: its proof, its generalizations, its analogues, arXiv preprint arXiv:1107.2938 [math.NT], 2011.
Eric Weisstein's World of Mathematics, Euler Zigzag Number.
Eric Weisstein's World of Mathematics, Alternating Permutation.
Eric Weisstein's World of Mathematics, Entringer Number.
FORMULA
E.g.f.: (1+sin(x))/cos(x) = tan(x) + sec(x).
E.g.f. for a(n+1) is 1/(cos(x/2) - sin(x/2))^2 = 1/(1-sin(x)) = d/dx(sec(x) + tan(x)).
E.g.f. A(x) = -log(1-sin(x)), for a(n+1). - Vladimir Kruchinin, Aug 09 2010
O.g.f.: A(x) = 1+x/(1-x-x^2/(1-2*x-3*x^2/(1-3*x-6*x^2/(1-4*x-10*x^2/(1-... -n*x-(n*(n+1)/2)*x^2/(1- ...)))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
E.g.f. A(x) = y satisfies 2y' = 1 + y^2. - Michael Somos, Feb 03 2004
a(n) = P_n(0) + Q_n(0) (see A155100 and A104035), defining Q_{-1} = 0. Cf. A156142.
2*a(n+1) = Sum_{k=0..n} binomial(n, k)*a(k)*a(n-k).
Asymptotics: a(n) ~ 2^(n+2)*n!/Pi^(n+1). For a proof, see for example Flajolet and Sedgewick.
a(n) = (n-1)*a(n-1) - Sum_{i=2..n-2} (i-1)*E(n-2, n-1-i), where E are the Entringer numbers A008281. - Jon Perry, Jun 09 2003
a(2*k) = (-1)^k euler(2k) and a(2k-1) = (-1)^(k-1)2^(2k)(2^(2k)-1) Bernoulli(2k)/(2k). - C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 17 2005
|a(n+1) - 2*a(n)| = A000708(n). - Philippe Deléham, Jan 13 2007
a(n) = 2^n|E(n,1/2) + E(n,1)| where E(n,x) are the Euler polynomials. - Peter Luschny, Jan 25 2009
a(n) = 2^(n+2)*n!*S(n+1)/(Pi)^(n+1), where S(n) = Sum_{k = -inf..inf} 1/(4k+1)^n (see the Elkies reference). - Emeric Deutsch, Aug 17 2009
a(n) = i^(n+1) Sum_{k=1..n+1} Sum_{j=0..k} binomial(k,j)(-1)^j (k-2j)^(n+1) (2i)^(-k) k^{-1}. - Ross Tang (ph.tchaa(AT)gmail.com), Jul 28 2010
a(n) = sum((if evenp(n+k) then (-1)^((n+k)/2)*sum(j!*Stirling2(n,j)*2^(1-j)*(-1)^(n+j-k)*binomial(j-1,k-1),j,k,n) else 0),k,1,n), n>0. - Vladimir Kruchinin, Aug 19 2010
If n==1(mod 4) is prime, then a(n)==1(mod n); if n==3(mod 4) is prime, then a(n)==-1(mod n). - Vladimir Shevelev, Aug 31 2010
For m>=0, a(2^m)==1(mod 2^m); If p is prime, then a(2*p)==1(mod 2*p). - Vladimir Shevelev, Sep 03 2010
From Peter Bala, Jan 26 2011: (Start)
a(n) = A(n,i)/(1+i)^(n-1), where i = sqrt(-1) and {A(n,x)}n>=1 = [1,1+x,1+4*x+x^2,1+11*x+11*x^2+x^3,...] denotes the sequence of Eulerian polynomials.
Equivalently, a(n) = i^(n+1)*Sum_{k=1..n} (-1)^k*k!*Stirling2(n,k) * ((1+i)/2)^(k-1) = i^(n+1)*Sum_{k = 1..n} (-1)^k*((1+i)/2)^(k-1)* Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*j^n.
This explicit formula for a(n) can be used to obtain congruence results. For example, for odd prime p, a(p) = (-1)^((p-1)/2) (mod p), as noted by Vladimir Shevelev above.
For the corresponding type B results see A001586. For the corresponding results for plane increasing 0-1-2 trees see A080635.
For generalized Eulerian, Stirling and Bernoulli numbers associated with the zigzag numbers see A145876, A147315 and A185424, respectively. For a recursive triangle to calculate a(n) see A185414.
(End)
a(n) = I^(n+1)*2*Li_{-n}(-I) for n > 0. Li_{s}(z) is the polylogarithm. - Peter Luschny, Jul 29 2011
a(n) = 2*Sum_{m=0..(n-2)/2} 4^m*(Sum_{i=m..(n-1)/2} (i-(n-1)/2)^(n-1)*binomial(n-2*m-1,i-m)*(-1)^(n-i-1)), n > 1, a(0)=1, a(1)=1. - Vladimir Kruchinin, Aug 09 2011
a(n) = D^(n-1)(1/(1-x)) evaluated at x = 0, where D is the operator sqrt(1-x^2)*d/dx. Cf. A006154. a(n) equals the alternating sum of the nonzero elements of row n-1 of A196776. This leads to a combinatorial interpretation for a(n); for example, a(4*n+2) gives the number of ordered set partitions of 4*n+1 into k odd-sized blocks, k = 1 (mod 4), minus the number of ordered set partitions of 4*n+1 into k odd-sized blocks, k = 3 (mod 4). Cf A002017. - Peter Bala, Dec 06 2011
From Sergei N. Gladkovskii, Nov 14 2011 - Dec 23 2013: (Start)
Continued fractions:
E.g.f.: tan(x) + sec(x) = 1 + x/U(0); U(k) = 4k+1-x/(2-x/(4k+3+x/(2+x/U(k+1)))).
E.g.f.: for a(n+1) is E(x) = 1/(1-sin(x)) = 1 + x/(1 - x + x^2/G(0)); G(k) = (2*k+2)*(2*k+3)-x^2+(2*k+2)*(2*k+3)*x^2/G(k+1).
E.g.f.: for a(n+1) is E(x) = 1/(1-sin(x)) = 1/(1 - x/(1 + x^2/G(0))) ; G(k) = 8*k+6-x^2/(1 + (2*k+2)*(2*k+3)/G(k+1)).
E.g.f.: for a(n+1) is E(x) = 1/(1 - sin(x)) = 1/(1 - x*G(0)); G(k) = 1 - x^2/(2*(2*k+1)*(4*k+3) - 2*x^2*(2*k+1)*(4*k+3)/(x^2 - 4*(k+1)*(4*k+5)/G(k+1))).
E.g.f.: for a(n+1) is E(x) = 1/(1 - sin(x)) = 1/(1 - x*G(0)) where G(k)= 1 - x^2/( (2*k+1)*(2*k+3) - (2*k+1)*(2*k+3)^2/(2*k+3 - (2*k+2)/G(k+1))).
E.g.f.: tan(x) + sec(x) = 1 + 2*x/(U(0)-x) where U(k) = 4k+2 - x^2/U(k+1).
E.g.f.: tan(x) + sec(x) = 1 + 2*x/(2*U(0)-x) where U(k) = 4*k+1 - x^2/(16*k+12 - x^2/U(k+1)).
E.g.f.: tan(x) + sec(x) = 4/(2-x*G(0))-1 where G(k) = 1 - x^2/(x^2 - 4*(2*k+1)*(2*k+3)/G(k+1)).
G.f.: 1 + x/Q(0), m=+4, u=x/2, where Q(k) = 1 - 2*u*(2*k+1) - m*u^2*(k+1)*(2*k+1)/(1 - 2*u*(2*k+2) - m*u^2*(k+1)*(2*k+3)/Q(k+1)).
G.f.: conjecture: 1 + T(0)*x/(1-x), where T(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(1-x*(k+1))*(1-x*(k+2))/T(k+1)).
E.g.f.: 1+ 4*x/(T(0) - 2*x), where T(k) = 4*(2*k+1) - 4*x^2/T(k+1):
E.g.f.: T(0)-1, where T(k) = 2 + x/(4*k+1 - x/(2 - x/( 4*k+3 + x/T(k+1)))). (End)
E.g.f.: tan(x/2 + Pi/4). - Vaclav Kotesovec, Nov 08 2013
Asymptotic expansion: 4*(2*n/(Pi*e))^(n+1/2)*exp(1/2+1/(12*n) -1/(360*n^3) + 1/(1260*n^5) - ...). (See the Luschny link.) - Peter Luschny, Jul 14 2015
From Peter Bala, Sep 10 2015: (Start)
The e.g.f. A(x) = tan(x) + sec(x) satisfies A''(x) = A(x)*A'(x), hence the recurrence a(0) = 1, a(1) = 1, else a(n) = Sum_{i = 0..n-2} binomial(n-2,i)*a(i)*a(n-1-i).
Note, the same recurrence, but with the initial conditions a(0) = 0 and a(1) = 1, produces the sequence [0,1,0,1,0,4,0,34,0,496,...], an aerated version of A002105. (End)
a(n) = A186365(n)/n for n >= 1. - Anton Zakharov, Aug 23 2016
From Peter Luschny, Oct 27 2017: (Start)
a(n) = abs(2*4^n*(H(((-1)^n - 3)/8, -n) - H(((-1)^n - 7)/8, -n))) where H(z, r) are the generalized harmonic numbers.
a(n) = (-1)^binomial(n + 1, 2)*2^(2*n + 1)*(zeta(-n, 1 + (1/8)*(-7 + (-1)^n)) - zeta(-n, 1 + (1/8)*(-3 + (-1)^n))). (End)
a(n) = i*(i^n*Li_{-n}(-i) - (-i)^n*Li_{-n}(i)), where i is the imaginary unit and Li_{s}(z) is the polylogarithm. - Peter Luschny, Aug 28 2020
Sum_{n>=0} 1/a(n) = A340315. - Amiram Eldar, May 29 2021
a(n) = n!*Re([x^n](1 + I^(n^2 - n)*(2 - 2*I)/(exp(x) + I))). - Peter Luschny, Aug 09 2021
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 61*x^6 + 272*x^7 + 1385*x^8 + ...
Sequence starts 1,1,2,5,16,... since possibilities are {}, {A}, {AB}, {ACB, BCA}, {ACBD, ADBC, BCAD, BDAC, CDAB}, {ACBED, ADBEC, ADCEB, AEBDC, AECDB, BCAED, BDAEC, BDCEA, BEADC, BECDA, CDAEB, CDBEA, CEADB, CEBDA, DEACB, DEBCA}, etc. - Henry Bottomley, Jan 17 2001
MAPLE
A000111 := n-> n!*coeff(series(sec(x)+tan(x), x, n+1), x, n);
s := series(sec(x)+tan(x), x, 100): A000111 := n-> n!*coeff(s, x, n);
A000111:=n->piecewise(n mod 2=1, (-1)^((n-1)/2)*2^(n+1)*(2^(n+1)-1)*bernoulli(n+1)/(n+1), (-1)^(n/2)*euler(n)):seq(A000111(n), n=0..30); A000111:=proc(n) local k: k:=floor((n+1)/2): if n mod 2=1 then RETURN((-1)^(k-1)*2^(2*k)*(2^(2*k)-1)*bernoulli(2*k)/(2*k)) else RETURN((-1)^k*euler(2*k)) fi: end:seq(A000111(n), n=0..30); (C. Ronaldo)
T := n -> 2^n*abs(euler(n, 1/2)+euler(n, 1)): # Peter Luschny, Jan 25 2009
S := proc(n, k) option remember; if k=0 then RETURN(`if`(n=0, 1, 0)) fi; S(n, k-1)+S(n-1, n-k) end:
A000364 := n -> S(2*n, 2*n);
A000182 := n -> S(2*n+1, 2*n+1);
A000111 := n -> S(n, n); # Peter Luschny, Jul 29 2009
a := n -> 2^(n+2)*n!*(sum(1/(4*k+1)^(n+1), k = -infinity..infinity))/Pi^(n+1):
1, seq(a(n), n = 1..22); # Emeric Deutsch, Aug 17 2009
# alternative Maple program:
b:= proc(u, o) option remember;
`if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 29 2015
MATHEMATICA
n=22; CoefficientList[Series[(1+Sin[x])/Cos[x], {x, 0, n}], x] * Table[k!, {k, 0, n}] (* Jean-François Alcover, May 18 2011, after Michael Somos *)
a[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n+1)*(2^(n+1)-1)*BernoulliB[n+1])/(n+1)]]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Oct 09 2012, after C. Ronaldo *)
ee = Table[ 2^n*EulerE[n, 1] + EulerE[n] - 1, {n, 0, 26}]; Table[ Differences[ee, n] // First // Abs, {n, 0, 26}] (* Jean-François Alcover, Mar 21 2013, after Paul Curtz *)
a[ n_] := If[ n < 0, 0, (2 I)^n If[ EvenQ[n], EulerE[n, 1/2], EulerE[n, 0] I]]; (* Michael Somos, Aug 15 2015 *)
a[ n_] := If[ n < 1, Boole[n == 0], With[{m = n - 1}, m! SeriesCoefficient[ 1 / (1 - Sin[x]), {x, 0, m}]]]; (* Michael Somos, Aug 15 2015 *)
s[0] = 1; s[_] = 0; t[n_, 0] := s[n]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0](* Jean-François Alcover, Feb 12 2016 *)
a[n_] := If[n == 0, 1, 2*Abs[PolyLog[-n, I]]]; (* Jean-François Alcover, Dec 02 2023, after M. F. Hasler *)
a[0] := 1; a[1] := 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] a[k] a[n - 1 - k], {k, 0, n - 2}]; Map[a, Range[0, 26]] (* Oliver Seipel, May 24 2024 after Peter Bala *)
a[0] := 1; a[1] := 1; a[n_] := a[n] = 1/(n (n-1)) Sum[a[n-1-k] a[k] k, {k, 1, n-1}]; Map[#! a[#]&, Range[0, 26]] (* Oliver Seipel, May 27 2024 *)
PROG
(PARI) {a(n) = if( n<1, n==0, n--; n! * polcoeff( 1 / (1 - sin(x + x * O(x^n))), n))}; \\ Michael Somos, Feb 03 2004
(PARI) {a(n) = local(v=[1], t); if( n<0, 0, for(k=2, n+2, t=0; v = vector(k, i, if( i>1, t+= v[k+1-i]))); v[2])}; \\ Michael Somos, Feb 03 2004
(PARI) {a(n) = local(an); if( n<1, n>=0, an = vector(n+1, m, 1); for( m=2, n, an[m+1] = sum( k=0, m-1, binomial(m-1, k) * an[k+1] * an[m-k]) / 2); an[n+1])}; \\ Michael Somos, Feb 03 2004
(PARI) z='z+O('z^66); egf = (1+sin(z))/cos(z); Vec(serlaplace(egf)) \\ Joerg Arndt, Apr 30 2011
(PARI) A000111(n)={my(k); sum(m=0, n\2, (-1)^m*sum(j=0, k=n+1-2*m, binomial(k, j)*(-1)^j*(k-2*j)^(n+1))/k>>k)} \\ M. F. Hasler, May 19 2012
(PARI) A000111(n)=if(n, 2*abs(polylog(-n, I)), 1) \\ M. F. Hasler, May 20 2012
(Maxima) a(n):=sum((if evenp(n+k) then (-1)^((n+k)/2)*sum(j!*stirling2(n, j)*2^(1-j)*(-1)^(n+j-k)*binomial(j-1, k-1), j, k, n) else 0), k, 1, n); /* Vladimir Kruchinin, Aug 19 2010 */
(Maxima)
a(n):=if n<2 then 1 else 2*sum(4^m*(sum((i-(n-1)/2)^(n-1)*binomial(n-2*m-1, i-m)*(-1)^(n-i-1), i, m, (n-1)/2)), m, 0, (n-2)/2); /* Vladimir Kruchinin, Aug 09 2011 */
(Sage) # Algorithm of L. Seidel (1877)
def A000111_list(n) :
R = []; A = {-1:0, 0:1}; k = 0; e = 1
for i in (0..n) :
Am = 0; A[k + e] = 0; e = -e
for j in (0..i) : Am += A[k]; A[k] = Am; k += e
R.append(Am)
return R
A000111_list(22) # Peter Luschny, Mar 31 2012 (revised Apr 24 2016)
(Haskell)
a000111 0 = 1
a000111 n = sum $ a008280_row (n - 1)
-- Reinhard Zumkeller, Nov 01 2013
(Python)
# requires python 3.2 or higher
from itertools import accumulate
A000111_list, blist = [1, 1], [1]
for n in range(10**2):
blist = list(reversed(list(accumulate(reversed(blist))))) + [0] if n % 2 else [0]+list(accumulate(blist))
A000111_list.append(sum(blist)) # Chai Wah Wu, Jan 29 2015
(Python)
from mpmath import *
mp.dps = 150
l = chop(taylor(lambda x: sec(x) + tan(x), 0, 26))
[int(fac(i) * li) for i, li in enumerate(l)] # Indranil Ghosh, Jul 06 2017
(Python)
from sympy import bernoulli, euler
def A000111(n): return abs(((1<<n+1)-1<<n+1)*bernoulli(n+1)//(n+1) if n&1 else euler(n)) # Chai Wah Wu, Nov 13 2024
CROSSREFS
Cf. A000364 (secant numbers), A000182 (tangent numbers).
Cf. A181937 for n-alternating permutations.
Cf. A109449 for an extension to an exponential Riordan array.
Column k=2 of A250261.
For 0-1-2 trees with n nodes and k leaves, see A301344.
Matula-Goebel numbers of 0-1-2 trees are A292050.
An overview over generalized Euler numbers gives A349264.
Sequence in context: A275711 A163747 A346838 * A007976 A058259 A361920
KEYWORD
nonn,core,eigen,nice,easy
EXTENSIONS
Edited by M. F. Hasler, Apr 04 2013
Title corrected by Geoffrey Critzer, May 18 2013
STATUS
approved