OFFSET
1,8
COMMENTS
A rooted tree is semi-binary if all outdegrees are <= 2. The number of semi-binary trees with n nodes is equal to the number of binary trees with n+1 leaves; see A001190.
EXAMPLE
Triangle begins:
1
1 0
1 1 0
1 2 0 0
1 4 1 0 0
1 6 4 0 0 0
1 9 11 2 0 0 0
1 12 24 9 0 0 0 0
1 16 46 32 3 0 0 0 0
1 20 80 86 20 0 0 0 0 0
1 25 130 203 86 6 0 0 0 0 0
The T(6,3) = 4 semi-binary rooted trees: ((o(oo))), (o((oo))), (o(o(o))), ((o)(oo)).
MATHEMATICA
rbt[n_]:=rbt[n]=If[n===1, {{}}, Join@@Function[c, Union[Sort/@Tuples[rbt/@c]]]/@Select[IntegerPartitions[n-1], Length[#]<=2&]];
Table[Length[Select[rbt[n], Count[#, {}, {-2}]===k&]], {n, 15}, {k, n}]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Mar 19 2018
STATUS
approved