login
A301345
Regular triangle where T(n,k) is the number of transitive rooted trees with n nodes and k leaves.
11
1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 1, 2, 4, 1, 0, 0, 0, 0, 3, 4, 5, 1, 0, 0, 0, 0, 2, 6, 6, 6, 1, 0, 0, 0, 0, 1, 6, 10, 9, 7, 1, 0, 0, 0, 0, 1, 5, 12, 16, 12, 8, 1, 0, 0, 0, 0, 0, 4, 13, 22, 23, 16, 9, 1, 0, 0, 0, 0, 0, 3, 14, 27, 36, 32, 20, 10, 1, 0, 0, 0, 0, 0, 2, 11
OFFSET
1,13
EXAMPLE
Triangle begins:
1
1 0
0 1 0
0 1 1 0
0 0 2 1 0
0 0 1 3 1 0
0 0 1 2 4 1 0
0 0 0 3 4 5 1 0
0 0 0 2 6 6 6 1 0
0 0 0 1 6 10 9 7 1 0
0 0 0 1 5 12 16 12 8 1 0
The T(9,5) = 6 transitive rooted trees: (o(o)(oo(o))), (o((oo))(oo)), (oo(o)(o(o))), (o(o)(o)(oo)), (ooo(o)((o))), (oo(o)(o)(o)).
MATHEMATICA
rut[n_]:=rut[n]=If[n===1, {{}}, Join@@Function[c, Union[Sort/@Tuples[rut/@c]]]/@IntegerPartitions[n-1]];
trat[n_]:=Select[rut[n], Complement[Union@@#, #]==={}&];
Table[Length[Select[trat[n], Count[#, {}, {-2}]===k&]], {n, 15}, {k, n}]
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Mar 19 2018
STATUS
approved