OFFSET
0,14
COMMENTS
The row polynomials p(n,x) := sum(a(n,m)*x^m,m=0..n) are negative scaled Chebyshev U-polynomials: p(n,x)= -U(n-1,sqrt(x)/2)*(sqrt(x))^(n+1), n >= 1. p(0,x)=0. p(n-1,1/x) appears in the n-th power of the g.f. of Catalan's numbers A000108, c(x): (c(x))^n = p(n-1,1/x)*1 -p(n,1/x)*x*c(x). Cf. Lang reference eqs.(1) and (2).
Signed version of A284938. - Eric W. Weisstein, Apr 06 2017
LINKS
T. Copeland, Addendum to Elliptic Lie Triad
W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Note 1 and Table.
FORMULA
a(n, m)=0 if n<m; a(0, 0)=0; a(n, m)= ((-1)^(n-m+1))*binomial(m-1, n-m) if n >= 1 and n >= m >=floor(n/2)+1; else 0.
EXAMPLE
Triangle begins:
0;
0, -1;
0, 0, -1;
0, 0, 1, -1;
0, 0, 0, 2, -1;
0, 0, 0, -1, 3, -1;
...
MATHEMATICA
Prepend[CoefficientList[Table[I^n x^(n/2) Fibonacci[n - 1, -I Sqrt[x]], {n, 2, 14}], x], {0}] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
Prepend[CoefficientList[Table[-x^(n/2) ChebyshevU[n - 2, Sqrt[x]/2], {n, 2, 14}], x], {0}] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
PROG
(PARI) tabl(nn) = {for (n=0, nn, for (k=0, n, if ((n==0) || (k < n\2+1), v = 0, v = (-1)^(n-k+1)*binomial(k-1, n-k)); print1(v, ", "); ); print(); ); } \\ Michel Marcus, Jan 14 2016
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Aug 11 2000
STATUS
approved