Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Apr 06 2017 15:16:32
%S 0,0,-1,0,0,-1,0,0,1,-1,0,0,0,2,-1,0,0,0,-1,3,-1,0,0,0,0,-3,4,-1,0,0,
%T 0,0,1,-6,5,-1,0,0,0,0,0,4,-10,6,-1,0,0,0,0,0,-1,10,-15,7,-1,0,0,0,0,
%U 0,0,-5,20,-21,8,-1,0,0,0,0,0,0,1,-15,35,-28,9,-1,0,0,0,0,0,0,0,6,-35,56,-36,10,-1,0,0,0,0,0,0,0,-1,21,-70,84
%N Coefficient triangle for certain polynomials (rising powers).
%C The row polynomials p(n,x) := sum(a(n,m)*x^m,m=0..n) are negative scaled Chebyshev U-polynomials: p(n,x)= -U(n-1,sqrt(x)/2)*(sqrt(x))^(n+1), n >= 1. p(0,x)=0. p(n-1,1/x) appears in the n-th power of the g.f. of Catalan's numbers A000108, c(x): (c(x))^n = p(n-1,1/x)*1 -p(n,1/x)*x*c(x). Cf. Lang reference eqs.(1) and (2).
%C Signed version of A284938. - _Eric W. Weisstein_, Apr 06 2017
%H T. Copeland, <a href="http://tcjpn.wordpress.com/2015/10/12/the-elliptic-lie-triad-kdv-and-ricattt-equations-infinigens-and-elliptic-genera/">Addendum to Elliptic Lie Triad</a>
%H W. Lang, <a href="http://www.fq.math.ca/Scanned/38-5/lang.pdf">On polynomials related to powers of the generating function of Catalan's numbers</a>, Fib. Quart. 38 (2000) 408-419. Note 1 and Table.
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F a(n, m)=0 if n<m; a(0, 0)=0; a(n, m)= ((-1)^(n-m+1))*binomial(m-1, n-m) if n >= 1 and n >= m >=floor(n/2)+1; else 0.
%e Triangle begins:
%e 0;
%e 0, -1;
%e 0, 0, -1;
%e 0, 0, 1, -1;
%e 0, 0, 0, 2, -1;
%e 0, 0, 0, -1, 3, -1;
%e ...
%t Prepend[CoefficientList[Table[I^n x^(n/2) Fibonacci[n - 1, -I Sqrt[x]], {n, 2, 14}], x], {0}] // Flatten (* _Eric W. Weisstein_, Apr 06 2017 *)
%t Prepend[CoefficientList[Table[-x^(n/2) ChebyshevU[n - 2, Sqrt[x]/2], {n, 2, 14}], x], {0}] // Flatten (* _Eric W. Weisstein_, Apr 06 2017 *)
%o (PARI) tabl(nn) = {for (n=0, nn, for (k=0, n, if ((n==0) || (k < n\2+1), v = 0, v = (-1)^(n-k+1)*binomial(k-1, n-k)); print1(v, ", ");); print(););} \\ _Michel Marcus_, Jan 14 2016
%Y Cf. A284938 (unsigned version).
%K easy,sign,tabl
%O 0,14
%A _Wolfdieter Lang_, Aug 11 2000