The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057092 Scaled Chebyshev U-polynomials evaluated at i*3/2. Generalized Fibonacci sequence. 12
 1, 9, 90, 891, 8829, 87480, 866781, 8588349, 85096170, 843160671, 8354311569, 82777250160, 820184055561, 8126651751489, 80521522263450, 797833566134451, 7905195795581109, 78327264255440040, 776092140459190341, 7689774642431673429, 76192801046017773930 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) gives the length of the word obtained after n steps with the substitution rule 0->1^9, 1->(1^9)0, starting from 0. The number of 1's and 0's of this word is 9*a(n-1) and 9*a(n-2), resp. a(n) gives the number of n-digit integers which have no digit repeated 3 times in a row. Example: a(2)= 90 which is all the 2-digit integers. a(3) = 891 = all 900 3-digit integers except 111, 222, 333, ..., 999. - Toby Gottfried, Apr 01 2013 a(n) is the number of n-digit integers which do not have two consecutive zeros. - Ran Pan, Jan 26 2016 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5. A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=9, q=9. Tanya Khovanova, Recursive Sequences W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs.(39) and (45),rhs, m=9. Index entries for sequences related to Chebyshev polynomials. Index entries for linear recurrences with constant coefficients, signature (9,9). FORMULA a(n) = 9*(a(n-1) + a(n-2)), a(-1)=0, a(0)=1. a(n) = S(n, i*3)*(-i*3)^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310. G.f.: 1/(1-9*x-9*x^2). a(n) = Sum_{k, 0<=k<=n}8^k*A063967(n,k). - Philippe Deléham, Nov 03 2006 MATHEMATICA Join[{a=0, b=1}, Table[c=9*b+9*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *) LinearRecurrence[{9, 9}, {1, 9}, 50] (* G. C. Greubel, Jan 25 2018 *) PROG (Sage) [lucas_number1(n, 9, -9) for n in range(1, 20)] # Zerinvary Lajos, Apr 26 2009 (PARI) Vec(1/(1-9*x-9*x^2) + O(x^30)) \\ Colin Barker, Jun 14 2015 (Magma) I:=[1, 9]; [n le 2 select I[n] else 9*Self(n-1) + 9*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 25 2018 CROSSREFS Sequence in context: A242161 A227713 A343366 * A156577 A299872 A173480 Adjacent sequences: A057089 A057090 A057091 * A057093 A057094 A057095 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Aug 11 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 17:30 EDT 2024. Contains 373653 sequences. (Running on oeis4.)