The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227713 The Wiener index of the tree g[n] (n>=0) defined recursively in the following manner: denoting by P[n] the path on n vertices, we define g =P while g[n] (n>=1) is the tree obtained by identifying the roots of 2 copies of g[n-1] and one of the end-vertices of P[n+1]; the root of g[n] is defined to be the other end-vertex of P[n+1]. 1
 1, 9, 90, 836, 6856, 49787, 326618, 1977322, 11244976, 60908337, 317509874, 1605448440, 7920487752, 38297112551, 182108066522, 853884638758, 3956279351760, 18143381822941, 82466719670866, 371917534537524, 1665777832832136, 7415146800493139 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Roughly speaking, g, for example, is obtained from the planted full binary tree of height 5 by replacing the edges at the levels 1,2,3,4 with paths of lengths 4, 3, 2, and 1, respectively. The value of a(4) has been checked by the direct evaluation of the Wiener index (using Maple). LINKS FORMULA a(n) = 80 +128*n/3 +19*n^2/2 +5*n^3/6 +2^n*(-64 +38*n +21*n^2/2 +3*n^3/2) +4^n*(-15 -27*n/2 +9*n^2/2). G.f.: (1 -15*x +128*x^2 -602*x^3 +1801*x^4 -3968*x^5 +6016*x^6 -5528*x^7 +3120*x^8 -1344*x^9 +256*x^10) / ((1-x)^4*(1-2*x)^4*(1-4*x)^3). EXAMPLE a(1)=9 because g is the tree in the shape of Y and 3*1 + 3*2 = 9. MAPLE a := proc (n) options operator, arrow: 80+(128/3)*n+(19/2)*n^2+(5/6)*n^3 +2^n*(-64+38*n +(21/2)*n^2+(3/2)*n^3)+4^n*(-15-(27/2)*n+(9/2)*n^2) end proc: seq(a(n), n = 0 .. 25); PROG (MAGMA) m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-15*x +128*x^2-602*x^3 +1801*x^4-3968*x^5+6016*x^6 -5528*x^7+3120*x^8 -1344*x^9 +256*x^10)/((1-x)^4*(1-2*x)^4*(1-4*x)^3))); // Bruno Berselli, Aug 08 2013 CROSSREFS Cf. A227714. Sequence in context: A158609 A229250 A242161 * A343366 A057092 A156577 Adjacent sequences:  A227710 A227711 A227712 * A227714 A227715 A227716 KEYWORD nonn,easy AUTHOR Emeric Deutsch, Aug 07 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 25 11:09 EDT 2021. Contains 346289 sequences. (Running on oeis4.)