login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227712 a(n) = 9*2^n - 3*n - 5. 1
4, 10, 25, 58, 127, 268, 553, 1126, 2275, 4576, 9181, 18394, 36823, 73684, 147409, 294862, 589771, 1179592, 2359237, 4718530, 9437119, 18874300, 37748665, 75497398, 150994867, 301989808, 603979693, 1207959466, 2415919015, 4831838116, 9663676321, 19327352734 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Denoting by P[n] the path on n vertices, a(n) is the number of vertices of the tree obtained by identifying the roots of 3 identical rooted trees g[n], where g[n] is obtained recursively in the following manner: g[0]=P[2] and g[n] (n>=1) is obtained by identifying the roots of 2 copies of g[n-1] and one of the extremities of P[n+1]; the root of g[n] is defined to be the other extremity of P[n+1]. Most references contain pictures of these trees; however, the small circles have to be viewed as vertices rather than hexagons.

LINKS

Table of n, a(n) for n=0..31.

R. Kopelman, M. Shortreed, Z. Y. Shi, W. Tan, Z. F. Xu, J. S. Moore, A. Bar-Haim, J. Klafter, Spectroscopic evidence for excitonic localization in fractal antenna supermolecules, Phys. Rev. Letters, 78, 1997, 1239-1242.

M. A. Martín-Delgado, J. Rodriguez-Laguna, G. Sierra, A density matrix renormalization group study of excitons in dendrimers, Phys. Rev. B 65, 2002, 155116(1-11).

S. Raychaudhuri, Y. Shapir, S. Mukamel, Disorder and funneling effect on exciton migration in treelike dendrimers, Phys. Rev. E, 65, 2002, 021803(1-12).

S. Tretiak, V. Chernyak, S. Mukamel, Localized electronic excitations in phenylacetylene dendrimers, J. Phys. Chem. B, 102, 1998, 3310-3315.

Index entries for linear recurrences with constant coefficients, signature (4,-5,2).

FORMULA

G.f.: (4-6*x+5*x^2)/((1-2*x)*(1-x)^2).

a(0)=4, a(1)=10, a(2)=25, a(n) = 4*a(n-1)-5*a(n-2)+2*a(n-3). - Harvey P. Dale, Apr 15 2015

a(n)= 3*A079583(n) + 1. - Emeric Deutsch, Feb 18 2016

EXAMPLE

a(1) = 10 because g[1] is the rooted tree in the shape of Y (4 vertices) and a "bouquet" of three Y's has 3*4 - 2 = 10 vertices.

MAPLE

a := proc (n) options operator, arrow: 9*2^n-3*n-5 end proc: seq(a(n), n = 0 .. 35);

MATHEMATICA

Table[9*2^n-3n-5, {n, 0, 40}] (* or *) LinearRecurrence[{4, -5, 2}, {4, 10, 25}, 40] (* Harvey P. Dale, Apr 15 2015 *)

PROG

(PARI) Vec((4-6*x+5*x^2)/((1-2*x)*(1-x)^2) + O(x^100)) \\ Altug Alkan, Oct 17 2015

(MAGMA) [9*2^n-3*n-5: n in [0..40]]; // Vincenzo Librandi, Feb 19 2016

CROSSREFS

Cf. A079583.

Sequence in context: A300760 A229916 A113412 * A159297 A248731 A279101

Adjacent sequences:  A227709 A227710 A227711 * A227713 A227714 A227715

KEYWORD

nonn,easy

AUTHOR

Emeric Deutsch, Aug 06 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 1 03:16 EDT 2020. Contains 337441 sequences. (Running on oeis4.)