login
A227709
The hyper-Wiener index of the dendrimer D_n defined pictorially in Fig. 1 of the Heydari et al. reference.
3
159, 906, 5664, 34932, 206652, 1168620, 6344268, 33264780, 169424652, 842319372, 4104041484, 19659270156, 92822679564, 432877854732, 1997218529292, 9129086189580, 41386604691468, 186264812126220, 832881548328972, 3702608701685772, 16373934411743244
OFFSET
0,1
COMMENTS
a(2) has been checked by the direct computation of the distance matrix (with Maple).
REFERENCES
A. Heydari, I. Gutman, On the terminal index of thorn graphs, Kragujevac J. Sci., 32, 2010, 57-64.
LINKS
FORMULA
a(n) = 12+2^n*(15+45*n+15*n^2) + 4^n*(132+18*n+36*n^2).
G.f.: 3*(53-705*x+4100*x^2-12636*x^3+21456*x^4-19328*x^5+7168*x^6)/((1-x)*(1-2*x)^3*(1-4*x)^3).
MAPLE
a := proc (n) options operator, arrow: 12+2^n*(15+45*n+15*n^2)+4^n*(132+18*n+36*n^2) end proc: seq(a(n), n = 0 .. 23);
MATHEMATICA
CoefficientList[Series[3 (53 - 705 x + 4100 x^2 - 12636 x^3 + 21456 x^4 - 19328 x^5 + 7168 x^6) / ((1 - x) (1 - 2 x)^3 (1 - 4 x)^3), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 04 2013 *)
PROG
(Magma) [12+2^n*(15+45*n+15*n^2)+4^n*(132+18*n+36*n^2): n in [0..25]]; // Vincenzo Librandi, Aug 04 2013
CROSSREFS
Sequence in context: A280971 A090948 A242115 * A212780 A232408 A121800
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 02 2013
STATUS
approved