OFFSET
0,1
COMMENTS
a(2) has been checked by the direct computation of the distance matrix (with Maple).
REFERENCES
A. Heydari, I. Gutman, On the terminal index of thorn graphs, Kragujevac J. Sci., 32, 2010, 57-64.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = 12+2^n*(15+45*n+15*n^2) + 4^n*(132+18*n+36*n^2).
G.f.: 3*(53-705*x+4100*x^2-12636*x^3+21456*x^4-19328*x^5+7168*x^6)/((1-x)*(1-2*x)^3*(1-4*x)^3).
MAPLE
a := proc (n) options operator, arrow: 12+2^n*(15+45*n+15*n^2)+4^n*(132+18*n+36*n^2) end proc: seq(a(n), n = 0 .. 23);
MATHEMATICA
CoefficientList[Series[3 (53 - 705 x + 4100 x^2 - 12636 x^3 + 21456 x^4 - 19328 x^5 + 7168 x^6) / ((1 - x) (1 - 2 x)^3 (1 - 4 x)^3), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 04 2013 *)
PROG
(Magma) [12+2^n*(15+45*n+15*n^2)+4^n*(132+18*n+36*n^2): n in [0..25]]; // Vincenzo Librandi, Aug 04 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 02 2013
STATUS
approved