login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A057090 Scaled Chebyshev U-polynomials evaluated at i*sqrt(7)/2. Generalized Fibonacci sequence. 9
1, 7, 56, 441, 3479, 27440, 216433, 1707111, 13464808, 106203433, 837677687, 6607167840, 52113918689, 411047605703, 3242130670744, 25572247935129, 201700650241111, 1590910287233680, 12548276562323537, 98974307946900519, 780658091564568392 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) gives the length of the word obtained after n steps with the substitution rule 0->1^7, 1->(1^7)0, starting from 0. The number of 1's and 0's of this word is 7*a(n-1) and 7*a(n-2), resp.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.

A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=7, q=7.

Tanya Khovanova, Recursive Sequences

W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs.(39) and (45),rhs, m=7.

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (7,7).

FORMULA

a(n) = 7*(a(n-1)+a(n-2)), a(0)=1, a(1)=7.

a(n) = S(n, i*sqrt(7))*(-i*sqrt(7))^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.

G.f.: 1/(1-7*x-7*x^2).

a(n) = Sum_{k=0..n} 6^k*A063967(n,k). - Philippe Deléham, Nov 03 2006

a(n) = -(1/77)*[(7/2)-(1/2)*sqrt(77)]^(n+1)*sqrt(77)+(1/77)*[(7/2)+(1/2)*sqrt(77)]^(n+1)*sqrt(77), with n>=0. - Paolo P. Lava, Nov 20 2008

MAPLE

a:= n-> (<<0|1>, <7|7>>^n. <<1, 7>>)[1, 1]:

seq(a(n), n=0..30);

MATHEMATICA

Join[{a=0, b=1}, Table[c=7*b+7*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *)

LinearRecurrence[{7, 7}, {1, 7}, 30] (* Harvey P. Dale, Nov 30 2012 *)

PROG

(Sage) [lucas_number1(n, 7, -7) for n in xrange(1, 21)] # Zerinvary Lajos, Apr 24 2009

(PARI) Vec(1/(1-7*x-7*x^2) + O(x^30)) \\ Colin Barker, Jun 14 2015

CROSSREFS

Cf. A000045.

Sequence in context: A092315 A229248 A242159 * A156362 A055274 A152776

Adjacent sequences:  A057087 A057088 A057089 * A057091 A057092 A057093

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 11 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 21 23:42 EDT 2017. Contains 290940 sequences.