OFFSET
0,2
COMMENTS
A Pellian sequence.
In general, Sum_{k=0..n} binomial(2n-k,k)j^(n-k) = (-1)^n*U(2n, i*sqrt(j)/2), i=sqrt(-1). - Paul Barry, Mar 13 2005
a(n) = L(n,9), where L is defined as in A108299; see also A057081 for L(n,-9). - Reinhard Zumkeller, Jun 01 2005
Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5,6,7,8} which do not end in 0. - Tanya Khovanova, Jan 10 2007
For positive n, a(n) equals the permanent of the (2n) X (2n) tridiagonal matrix with sqrt(7)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Positive values of x (or y) satisfying x^2 - 9xy + y^2 + 7 = 0. - Colin Barker, Feb 09 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
Tanya Khovanova, Recursive Sequences
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
Index entries for linear recurrences with constant coefficients, signature (9,-1).
FORMULA
a(n) ~ (1/11)*sqrt(11)*((1/2)*(sqrt(11) + sqrt(7)))^(2*n+1).
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then q(n, 7) = a(n). - Benoit Cloitre, Nov 10 2002
a(n)*a(n+3) = 63 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
a(n) = (-1)^n*U(2n, i*sqrt(7)/2), U(n, x) Chebyshev polynomial of second kind, i=sqrt(-1). - Paul Barry, Mar 13 2005
G.f.: (1-x)/(1-9*x+x^2). - Philippe Deléham, Nov 03 2008
MATHEMATICA
CoefficientList[Series[(1 - x)/(1 - 9 x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *)
LinearRecurrence[{9, -1}, {1, 8}, 30] (* Harvey P. Dale, Sep 24 2015 *)
PROG
(Sage) [lucas_number1(n, 9, 1) - lucas_number1(n-1, 9, 1) for n in range(1, 19)] # Zerinvary Lajos, Nov 10 2009
(Magma) I:=[1, 8]; [n le 2 select I[n] else 9*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 10 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Joe Keane (jgk(AT)jgk.org), May 18 2002
EXTENSIONS
More terms from Vincenzo Librandi, Feb 10 2014
STATUS
approved