login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198856
a(n) = 9*8^n - 1.
1
8, 71, 575, 4607, 36863, 294911, 2359295, 18874367, 150994943, 1207959551, 9663676415, 77309411327, 618475290623, 4947802324991, 39582418599935, 316659348799487, 2533274790395903, 20266198323167231, 162129586585337855
OFFSET
0,1
COMMENTS
The subsequence of primes begins: 71, 294911, 18874367, 83010348331692982271, no more through a(30). - Jonathan Vos Post, Oct 31 2011
FORMULA
a(n) = 8*a(n-1) + 7.
a(n) = 9*a(n-1) - 8*a(n-2), n>1.
G.f.: (8-x)/((1-x)*(1-8*x)). - Vincenzo Librandi, Oct 04 2014
E.g.f.: exp(x)*(9*exp(7*x) - 1). - Elmo R. Oliveira, Aug 10 2024
MATHEMATICA
CoefficientList[Series[(8 - x)/((1-x) (1 - 8 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 04 2014 *)
LinearRecurrence[{9, -8}, {8, 71}, 20] (* Harvey P. Dale, Aug 26 2020 *)
PROG
(Magma) [9*8^n-1: n in [0..30]];
CROSSREFS
Sequence in context: A217328 A193102 A038145 * A320092 A015576 A070998
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Oct 31 2011
STATUS
approved