login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070997 a(n) = 8*a(n-1) - a(n-2), a(0)=1, a(-1)=1. 26
1, 7, 55, 433, 3409, 26839, 211303, 1663585, 13097377, 103115431, 811826071, 6391493137, 50320119025, 396169459063, 3119035553479, 24556114968769, 193329884196673, 1522082958604615, 11983333784640247, 94344587318517361 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A Pellian sequence.

In general, sum{k=0..n, binomial(2n-k,k)j^(n-k)}=(-1)^n*U(2n,I*sqrt(j)/2), I=sqrt(-1); - Paul Barry, Mar 13 2005

a(n) = L(n,8), where L is defined as in A108299; see also A057080 for L(n,-8). - Reinhard Zumkeller, Jun 01 2005

Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5,6,7} which do not end in 0. - Tanya Khovanova, Jan 10 2007

Hankel transform of A158197. [From Paul Barry, Mar 13 2009]

For positive n, a(n) equals the permanent of the (2n)X(2n) tridiagonal matrix with sqrt(6)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. [From John M. Campbell, Jul 08 2011]

Values of x (or y) in the solutions to x^2 - 8xy + y^2 + 6 = 0. - Colin Barker, Feb 05 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Tanya Khovanova, Recursive Sequences

J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962, 2014

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (8,-1).

FORMULA

For all members x of the sequence, 15*x^2 - 6 is a square. Lim. n-> Inf. a(n)/a(n-1) = 4 + sqrt(15). - Gregory V. Richardson, Oct 12 2002

a(n) = (5+sqrt(15))/10 * (4+sqrt(15))^n + (5-sqrt(15))/10 * (4-sqrt(15))^n

a(n) ~ 1/10*sqrt(10)*(1/2*(sqrt(10)+sqrt(6)))^(2*n+1)

a(n) = U(n, 4)-U(n-1, 4) = T(2*n+1, sqrt(5/2))/sqrt(5/2), with Chebyshev's U and T Polynomials and U(-1, x) := 0. U(n, 4)=A001090(n+1), n>=-1.

Let q(n, x)=sum(i=0, n, x^(n-i)*binomial(2*n-i, i)); then q(n, 6)=a(n) - Benoit Cloitre, Nov 10 2002

a(n)a(n+3) = 48 + a(n+1)a(n+2). - Ralf Stephan, May 29 2004

a(n)=(-1)^n*U(2n, I*sqrt(6)/2), U(n, x) Chebyshev polynomial of second kind, I=sqrt(-1); - Paul Barry, Mar 13 2005

G.f.: (1-x)/(1-8*x+x^2). a(n)=a(-1-n).

a(n) = Jacobi_P(n,-1/2,1/2,4)/Jacobi_P(n,-1/2,1/2,1). - Paul Barry, Feb 03 2006

[a(n), A001090(n+1)] = [1,6; 1,7]^(n+1) * [1,0]. - Gary W. Adamson, Mar 21 2008

EXAMPLE

1 + 7*x + 55*x^2 + 433*x^3 + 3409*x^4 + 26839*x^5 + ...

MATHEMATICA

CoefficientList[Series[(1 - x)/(1 - 8*x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 26 2013 *)

a[c_, n_] := Module[{},

   p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];

   d := Denominator[Convergents[Sqrt[c], n p]];

   t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];

   Return[t];

   ] (* Complement of A041023 *)

a[15, 20] (* Gerry Martens, Jun 07 2015 *)

PROG

(PARI) {a(n) = subst( 9*poltchebi(n) - poltchebi(n-1), x, 4) / 5} /* Michael Somos, Jun 07 2005 */

(PARI) {a(n) = if( n<0, n=-1-n); polcoeff( (1 - x) / (1 - 8*x + x^2) + x * O(x^n), n)} /* Michael Somos, Jun 07 2005 */

(Sage) [lucas_number1(n, 8, 1)-lucas_number1(n-1, 8, 1) for n in xrange(1, 21)]# [From Zerinvary Lajos, Nov 10 2009]

(MAGMA) I:=[1, 7]; [n le 2 select I[n] else 8*Self(n-1) - Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 26 2013

CROSSREFS

a(n) = sqrt((3*A057080(n)^2+2)/5) (cf. Richardson comment)

Cf. A057080, A001090, A001091.

Row 8 of array A094954.

Cf. A001090.

Cf. similar sequences listed in A238379.

Cf. A041023

Sequence in context: A198689 A172743 A015564 * A122372 A083068 A097189

Adjacent sequences:  A070994 A070995 A070996 * A070998 A070999 A071000

KEYWORD

nonn,easy

AUTHOR

Joe Keane (jgk(AT)jgk.org), May 18 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 29 09:07 EDT 2017. Contains 285604 sequences.