This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070997 a(n) = 8*a(n-1) - a(n-2), a(0)=1, a(-1)=1. 27
 1, 7, 55, 433, 3409, 26839, 211303, 1663585, 13097377, 103115431, 811826071, 6391493137, 50320119025, 396169459063, 3119035553479, 24556114968769, 193329884196673, 1522082958604615, 11983333784640247, 94344587318517361 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A Pellian sequence. In general, Sum_{k=0..n} binomial(2n-k,k)j^(n-k) = (-1)^n*U(2n,i*sqrt(j)/2), i=sqrt(-1). - Paul Barry, Mar 13 2005 a(n) = L(n,8), where L is defined as in A108299; see also A057080 for L(n,-8). - Reinhard Zumkeller, Jun 01 2005 Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5,6,7} which do not end in 0. - Tanya Khovanova, Jan 10 2007 Hankel transform of A158197. - Paul Barry, Mar 13 2009 For positive n, a(n) equals the permanent of the (2n) X (2n) tridiagonal matrix with sqrt(6)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011 Values of x (or y) in the solutions to x^2 - 8xy + y^2 + 6 = 0. - Colin Barker, Feb 05 2014 REFERENCES Fink, Alex, Richard Guy, and Mark Krusemeyer. "Partitions with parts occurring at most thrice." Contributions to Discrete Mathematics 3.2 (2008), 76-114. See Section 13. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Tanya Khovanova, Recursive Sequences J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014. Index entries for linear recurrences with constant coefficients, signature (8,-1). FORMULA For all members x of the sequence, 15*x^2 - 6 is a square. Lim_{n->infinity} a(n)/a(n-1) = 4 + sqrt(15). - Gregory V. Richardson, Oct 12 2002 a(n) = (5+sqrt(15))/10 * (4+sqrt(15))^n + (5-sqrt(15))/10 * (4-sqrt(15))^n. a(n) ~ 1/10*sqrt(10)*(1/2*(sqrt(10)+sqrt(6)))^(2*n+1) a(n) = U(n, 4)-U(n-1, 4) = T(2*n+1, sqrt(5/2))/sqrt(5/2), with Chebyshev's U and T Polynomials and U(-1, x) := 0. U(n, 4)=A001090(n+1), n>=-1. Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then q(n, 6) = a(n) - Benoit Cloitre, Nov 10 2002 a(n)a(n+3) = 48 + a(n+1)a(n+2). - Ralf Stephan, May 29 2004 a(n) = (-1)^n*U(2n, i*sqrt(6)/2), U(n, x) Chebyshev polynomial of second kind, i=sqrt(-1). - Paul Barry, Mar 13 2005 G.f.: (1-x)/(1-8*x+x^2). a(n) = a(-1-n). a(n) = Jacobi_P(n,-1/2,1/2,4)/Jacobi_P(n,-1/2,1/2,1). - Paul Barry, Feb 03 2006 [a(n), A001090(n+1)] = [1,6; 1,7]^(n+1) * [1,0]. - Gary W. Adamson, Mar 21 2008 EXAMPLE 1 + 7*x + 55*x^2 + 433*x^3 + 3409*x^4 + 26839*x^5 + ... MATHEMATICA CoefficientList[Series[(1 - x)/(1 - 8*x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 26 2013 *) a[c_, n_] := Module[{},    p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];    d := Denominator[Convergents[Sqrt[c], n p]];    t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];    Return[t];    ] (* Complement of A041023 *) a[15, 20] (* Gerry Martens, Jun 07 2015 *) PROG (PARI) {a(n) = subst( 9*poltchebi(n) - poltchebi(n-1), x, 4) / 5} /* Michael Somos, Jun 07 2005 */ (PARI) {a(n) = if( n<0, n=-1-n); polcoeff( (1 - x) / (1 - 8*x + x^2) + x * O(x^n), n)} /* Michael Somos, Jun 07 2005 */ (Sage) [lucas_number1(n, 8, 1)-lucas_number1(n-1, 8, 1) for n in xrange(1, 21)] # Zerinvary Lajos, Nov 10 2009 (MAGMA) I:=[1, 7]; [n le 2 select I[n] else 8*Self(n-1) - Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 26 2013 CROSSREFS a(n) = sqrt((3*A057080(n)^2+2)/5) (cf. Richardson comment). Cf. A057080, A001090, A001091. Row 8 of array A094954. Cf. A001090. Cf. similar sequences listed in A238379. Cf. A041023. Sequence in context: A320091 A172743 A015564 * A122372 A083068 A097189 Adjacent sequences:  A070994 A070995 A070996 * A070998 A070999 A071000 KEYWORD nonn,easy AUTHOR Joe Keane (jgk(AT)jgk.org), May 18 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 19 03:28 EST 2018. Contains 318245 sequences. (Running on oeis4.)