login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015564
Expansion of x/(1 - 7*x - 6*x^2).
4
0, 1, 7, 55, 427, 3319, 25795, 200479, 1558123, 12109735, 94116883, 731476591, 5685037435, 44184121591, 343399075747, 2668898259775, 20742682272907, 161212165468999, 1252941251920435, 9737861756257039, 75682679805321883
OFFSET
0,3
COMMENTS
Pisano period lengths: 1, 1, 1, 1, 12, 1, 4, 2, 3, 12, 15, 1, 168, 4, 12, 4, 288, 3, 18, 12, ... - R. J. Mathar, Aug 10 2012
LINKS
Lucyna Trojnar-Spelina and Iwona Włoch, On Generalized Pell and Pell-Lucas Numbers, Iranian Journal of Science and Technology, Transactions A: Science (2019), 1-7.
FORMULA
a(n) = 7*a(n-1) + 6*a(n-2).
MATHEMATICA
LinearRecurrence[{7, 6}, {0, 1}, 30] (* Vincenzo Librandi, Nov 14 2012 *)
CoefficientList[Series[x/(1-7x-6x^2), {x, 0, 20}], x] (* Harvey P. Dale, Dec 04 2024 *)
PROG
(Sage) [lucas_number1(n, 7, -6) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
(Magma) [n le 2 select n-1 else 7*Self(n-1) + 6*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2012
(PARI) x='x+O('x^30); concat([0], Vec(x/(1-7*x-6*x^2))) \\ G. C. Greubel, Dec 30 2017
CROSSREFS
Sequence in context: A198689 A320091 A172743 * A070997 A370177 A122372
KEYWORD
nonn,easy,changed
STATUS
approved