OFFSET
1,1
COMMENTS
Does lim_{n->infinity} a(n)/n = 3?
Sum_{k=1..n} 1/gcd(n,k) = (1/n)*Sum_{d|n} phi(d)*d = (1/n)*Sum_{k=1..n} gcd(n,k)*phi(gcd(n,k))/phi(n/gcd(n,k)), where phi = A000010. - Richard L. Ollerton, May 10 2021
Numbers k such that gcd(k, A057660(k)) > 1. - Amiram Eldar, Jun 29 2022
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
EXAMPLE
Sum_{k=1..6} 1/gcd(6,k) = 7/2, hence 6 is in the sequence;
Sum_{k=1..12} 1/gcd(12,k) = 77/12 so 12 is not in the sequence.
MATHEMATICA
Select[Range[300], Denominator[Sum[1/GCD[#, k], {k, #}]]!=#&] (* Harvey P. Dale, May 07 2022 *)
f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[250], !CoprimeQ[#, s[#]] &] (* Amiram Eldar, Jun 29 2022 *)
PROG
(PARI) for(n=1, 300, if(denominator(sum(i=1, n, 1/gcd(n, i)))<n, print1(n, ", ")))
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 18 2002
STATUS
approved