login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342935
Number of ordered triples (x, y, z) with gcd(x, y, z) = 1 and 1 <= {x, y, z} <= 2^n.
8
1, 7, 55, 439, 3433, 27541, 218773, 1749223, 13964245, 111725197, 893433661, 7147232467, 57169672861, 457364647435, 3658819119307, 29270432746633, 234161501271463, 1873293863661469, 14986321908515773, 119890565631185995, 959124025074311215, 7672992332048493361
OFFSET
0,2
LINKS
Chai Wah Wu, Table of n, a(n) for n = 0..53 (terms n = 0..32 from Karl-Heinz Hofmann)
FORMULA
Lim_{n->infinity} a(n)/2^(3*n) = 1/zeta(3) = A088453 = 1/Apéry's constant.
a(n) = A071778(2^n).
EXAMPLE
For n=3, the size of the division cube matrix is 8 X 8 X 8:
.
: : : : : : : : :
.
z = 4 | 1 2 3 4 5 6 7 8
------+----------------------
1 /| o o o o o o o o 8
2 / | o . o . o . o . 4 64 Sum (z = 1)
3/ | o o o o o o o o 8 /
/ o . 4 48 Sum (z = 2)
z = 5 |/1 2 3 4 5 6 7 8 o 8 /
------+---------------------- 4 60 Sum (z = 3)
1 /| o o o o o o o o 8 8 /
2 / | o o o o o o o o 8 4 /
3/ | o o o o o o o o 8 --/
/ o o 8 48 Sum (z = 4)
z = 6 |/1 2 3 4 5 6 7 8 o 7 /
------+---------------------- 8 /
1 /| o o o o o o o o 8 8 /
2 / | o . o . o . o . 4 8 /
3/ | o o o o o o o o 6 --/
/ o . 4 63 Sum (z = 5)
z = 7 |/1 2 3 4 5 6 7 8 o 8 /
------+---------------------- 3 /
1 /| o o o o o o o o 8 8 /
2 / | o o o o o o o o 8 4 /
3/ | o o o o o o o o 8 --/
/ o o 8 45 Sum (z = 6)
z = 8 |/1 2 3 4 5 6 7 8 o 8 /
------+---------------------- 8 /
1 | o o o o o o o o 8 7 /
2 | o . o . o . o . 4 8 /
3 | o o o o o o o o 8 --/
4 | o . o . o . o . 4 63 Sum (z = 7)
5 | o o o o o o o o 8 /
6 | o . o . o . o . 4 /
7 | o o o o o o o o 8 /
8 | o . o . o . o . 4 /
--/
48 Sum (z = 8)
|
---
439 Cube Sum (z = 1..8)
MATHEMATICA
Array[Sum[MoebiusMu[k]*Floor[(2^#)/k]^3, {k, 2^# + 1}] &, 22, 0] (* Michael De Vlieger, Apr 05 2021 *)
PROG
(Python)
from labmath import mobius
def A342935(n): return sum(mobius(k)*(2**n//k)**3 for k in range(1, 2**n+1))
KEYWORD
nonn
AUTHOR
Karl-Heinz Hofmann, Mar 29 2021
EXTENSIONS
Edited by N. J. A. Sloane, Jun 13 2021
STATUS
approved