login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071778
Number of ordered triples (a, b, c) with gcd(a, b, c) = 1 and 1 <= {a, b, c} <= n.
22
1, 7, 25, 55, 115, 181, 307, 439, 637, 841, 1171, 1447, 1915, 2329, 2881, 3433, 4249, 4879, 5905, 6745, 7861, 8911, 10429, 11557, 13297, 14773, 16663, 18355, 20791, 22495, 25285, 27541, 30361, 32905, 36289, 38845, 42841, 46027, 49987, 53395
OFFSET
1,2
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
IBM Ponder This, Coin-weighing problem, Jun 01 2002
Eric Weisstein's World of Mathematics, Greatest Common Divisor
FORMULA
a(n) = Sum_{k=1..n} mu(k)*floor(n/k)^3. - Benoit Cloitre, May 11 2003
a(n) = n^3 - Sum_{j=2..n} a(floor(n/j)). - Vladeta Jovovic, Nov 30 2004
G.f.: (1/(1 - x)) * Sum_{k >= 1} mu(k) * x^k * (1 + 4*x^k + x^(2*k))/(1 - x^k)^3. - Seiichi Manyama, May 22 2021
a(n) ~ n^3/zeta(3). - Vaclav Kotesovec, Sep 14 2021
MAPLE
f:=proc(n) local i, j, k, t1, t2, t3; t1:=0; for i from 1 to n do for j from 1 to n do t2:=gcd(i, j); for k from 1 to n do t3:=gcd(t2, k); if t3 = 1 then t1:=t1+1; fi; od: od: od: t1; end;
MATHEMATICA
a[n_] := Sum[MoebiusMu[k]*Quotient[n, k]^3, {k, 1, n}]; Array[a, 40] (* Jean-François Alcover, Apr 14 2014, after Benoit Cloitre *)
PROG
(Java) public class Triples { public static void main(String[] argv) { int i, j, k, a, m, n, d; boolean cf; try {a = Integer.parseInt(argv[0]); } catch (Exception e) {a = 10; }
for (m = 1; m <= a; m++) { n = 0; for (i = 1; i <= m; i++) for (j = 1; j <= m; j++) for (k = 1; k <= m; k++) { cf = false; for (d = 2; d <= m; d++) cf = cf || ((i % d == 0) && (j % d == 0) && (k % d == 0)); if (!cf) n++; } System.out.println(m + ": " + n); } } }
(PARI) a(n)=sum(k=1, n, moebius(k)*(n\k)^3)
(PARI) a(n)=my(s); forsquarefree(k=1, n, s+=moebius(k)*(n\k[1])^3); s \\ Charles R Greathouse IV, Jan 08 2018
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^3)/(1-x)) \\ Seiichi Manyama, May 22 2021
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A071778(n):
if n == 0:
return 0
c, j = 1, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A071778(k1)
j, k1 = j2, n//j2
return n*(n**2-1)-c+j # Chai Wah Wu, Mar 29 2021
CROSSREFS
Cf. A018805 (ordered pairs), A082540, A082544, A343978, A344522.
Sequence in context: A155286 A155313 A213390 * A350156 A155250 A155260
KEYWORD
nonn
AUTHOR
Michael Malak (mmalak(AT)alum.mit.edu), Jun 04 2002
STATUS
approved