This site is supported by donations to The OEIS Foundation.

# User:Karl-Heinz Hofmann

Interested in Numbers. Especially in Mersenne Primes.
Registered user of www.mersenne.org
mail<ät>riedfarmer.de
In the end: I´m only an ordinary farmer, with an university graduation.

Sequences dealing with 1/zeta(s)

s
zeta(s)
Decimal Expansion
1 / zeta(s)
Decimal Expansion
1 / zeta(s) in
n steps
1 / zeta(s) in
2^n steps
1 / zeta(s) in
10^n steps
2 A013661 A059956 A018805 A342632 A342586
3 A002117 A088453 A071778 A342935 A342841
4 A013662 A215267 A082540 A343527 A343193
5 A013663 A343308 A082544 NOGI A343282
6 A013664 A343359 A343978 NOGI A344038
7 A013665 A343367 NOGI NOGI NOGI
8 A013666 A342683 NOGI NOGI NOGI
9 A013667 A341901 NOGI NOGI NOGI

NOGI = "not of great interest"

Sequences dealing with z^2 = x^2 + y^4
z = x^2 + y^4
all Solutions
z^2 = x^2 + y^4
all Solutions
z^2 = x^2 + y^4
1 Solutions
z^2 = x^2 + y^4
2 Solutions
z^2 = x^2 + y^4
3 Solutions
z^2 = x^2 + y^4
4 Solutions
z^2 = x^2 + y^4
5 Solutions
z^2 = x^2 + y^4
6 Solutions
z^2 = x^2 + y^4
Collected a(1)´s of A345645, A345700, A345968, A346110, A348655, A349324
A111925 A271576 A345645 A345700 A345968 A346110 A348655 A349324 A346115

My contributions: as a list
or Here