login
A344038
Number of ordered 6-tuples (a,b,c,d,e,f) with gcd(a,b,c,d,e,f)=1 (1<= {a,b,c,d,e,f} <= 10^n).
5
1, 983583, 983029267047, 982960635742968103, 982953384128772770413831, 982952672223441253533233827367, 982952600027678075050509511271466303, 982952593055042000417993486008754893529583, 982952592342881094406730790044111038427637071855
OFFSET
0,2
LINKS
FORMULA
Lim_{n->infinity} a(n)/10^(6*n) = 1/zeta(6) = A343359 = 945/Pi^4.
a(n) = A343978(10^n).
PROG
(Python)
from labmath import mobius
def A344038(n): return sum(mobius(k)*(10**n//k)**6 for k in range(1, 10**n+1))
(PARI) a(n)={sum(k=1, 10^n+1, moebius(k)*(10^n\k)^6)} \\ Andrew Howroyd, May 08 2021
CROSSREFS
Related counts of k-tuples:
triples: A071778, A342935, A342841;
quadruples: A082540, A343527, A343193;
5-tuples: A343282;
6-tuples: A343978, A344038. - N. J. A. Sloane, Jun 13 2021
Sequence in context: A343800 A251471 A213125 * A250859 A251450 A205656
KEYWORD
nonn,less
AUTHOR
Karl-Heinz Hofmann, May 07 2021
EXTENSIONS
Edited by N. J. A. Sloane, Jun 13 2021
STATUS
approved