login
A345968
Numbers whose square can be represented in exactly three ways as the sum of a positive square and a positive fourth power.
9
1625, 6500, 14625, 18785, 24505, 26000, 40625, 58500, 75140, 79625, 88985, 98020, 104000, 120250, 131625, 162500, 169065, 196625, 220545, 234000, 274625, 296225, 300560, 318500, 355940, 365625, 392080, 416000, 481000, 526500, 547230, 586625, 611585, 612625
OFFSET
1,1
COMMENTS
Terms are numbers z such that there are exactly 3 solutions to z^2 = x^2 + y^4, where x, y and z belong to the set of positive integers.
No term can be a square (see the comment from Altug Alkan in A111925).
Terms must have at least one prime factor of the form p == 1 (mod 4), a Pythagorean prime (A002144).
Additionally, if the terms have prime factors of the form p == 3 (mod 4), which are in A002145, then they must appear in the prime divisor sets of x and y too.
The special prime factor 2 has the same behavior, i.e., if the term is even, x and y must be even too.
EXAMPLE
29640^2 + 39^4 = 29679^2; 29679 is not a term (only 1 solution).
60^2 + 5^4 = 63^2 + 4^4 = 65^2; 65 is not a term (only 2 solutions).
572^2 + 39^4 = 1500^2 + 25^4 = 1575^2 + 20^4 = 1625^2; 1625 is a term (3 solutions).
165308^2 + 663^4 = 349575^2 + 560^4 = 433500^2 + 425^4 = 455175^2 + 340^4 = 469625^2; 469625 is not a term (4 solutions).
CROSSREFS
Cf. A271576 (1 and more solutions), A345645 (1 solution), A345700 (2 solutions), A346110 (4 solutions), A348655 (5 solutions), A349324 (6 solutions), A346115 (the least solutions).
Cf. A002144 (p == 1 (mod 4)), A002145 (p == 3 (mod 4)).
Sequence in context: A022060 A107524 A097225 * A186846 A198510 A241493
KEYWORD
nonn
AUTHOR
Karl-Heinz Hofmann, Jun 30 2021
STATUS
approved