login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013665 Decimal expansion of zeta(7). 8
1, 0, 0, 8, 3, 4, 9, 2, 7, 7, 3, 8, 1, 9, 2, 2, 8, 2, 6, 8, 3, 9, 7, 9, 7, 5, 4, 9, 8, 4, 9, 7, 9, 6, 7, 5, 9, 5, 9, 9, 8, 6, 3, 5, 6, 0, 5, 6, 5, 2, 3, 8, 7, 0, 6, 4, 1, 7, 2, 8, 3, 1, 3, 6, 5, 7, 1, 6, 0, 1, 4, 7, 8, 3, 1, 7, 3, 5, 5, 7, 3, 5, 3, 4, 6, 0, 9, 6, 9, 6, 8, 9, 1, 3, 8, 5, 1, 3, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,4

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.

LINKS

Table of n, a(n) for n=1..99.

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

J. Borwein and D. Bradley, Empirically determined Apéry-like formulas for zeta(4n+3), arXiv:math/0505124 [math.CA], 2005.

Michael J. Dancs, Tian-Xiao He, An Euler-type formula for zeta(2k+1), Journal of Number Theory, Volume 118, Issue 2, June 2006, Pages 192-199.

Simon Plouffe, Plouffe's Inverter, Zeta(7) to 50000 digits

Simon Plouffe, Zeta(7) to 512 places:sum(1/n^7, n=1..infinity)

FORMULA

zeta(7) = Sum_{n >= 1} (A010052(n)/n^(7/2)) = Sum_{n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^(7/2) ). - Mikael Aaltonen, Feb 22 2015

MATHEMATICA

RealDigits[Zeta[7], 10, 120][[1]] (* Harvey P. Dale, Oct 23 2012 *)

PROG

(PARI) zeta(7) \\ Michel Marcus, Apr 17 2016

CROSSREFS

Cf. A023874, A023875, A248884.

Sequence in context: A111436 A014549 A021549 * A209059 A202779 A199440

Adjacent sequences:  A013662 A013663 A013664 * A013666 A013667 A013668

KEYWORD

cons,nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 30 00:52 EDT 2016. Contains 275961 sequences.