login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013663 Decimal expansion of zeta(5). 16
1, 0, 3, 6, 9, 2, 7, 7, 5, 5, 1, 4, 3, 3, 6, 9, 9, 2, 6, 3, 3, 1, 3, 6, 5, 4, 8, 6, 4, 5, 7, 0, 3, 4, 1, 6, 8, 0, 5, 7, 0, 8, 0, 9, 1, 9, 5, 0, 1, 9, 1, 2, 8, 1, 1, 9, 7, 4, 1, 9, 2, 6, 7, 7, 9, 0, 3, 8, 0, 3, 5, 8, 9, 7, 8, 6, 2, 8, 1, 4, 8, 4, 5, 6, 0, 0, 4, 3, 1, 0, 6, 5, 5, 7, 1, 3, 3, 3, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

In a widely distributed May 2011 email, Wadim Zudilin gave a rebuttal to v1 of Kim's 2011 preprint: "The mistake (unfixable) is on p. 6, line after eq. (3.3). 'Without loss of generality' can be shown to work only for a finite set of n_k's; as the n_k are sufficiently large (and N is fixed), the inequality for epsilon is false." In a May 2013 email, Zudilin extended his rebuttal to cover v2, concluding that Kim's argument "implies that at least one of zeta(2), zeta(3), zeta(4) and zeta(5) is irrational, which is trivial." - Jonathan Sondow, May 06 2013

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.

W. Zudilin, One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational, Russ. Math. Surv. 56 (2001), 774-776.

LINKS

Table of n, a(n) for n=1..99.

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

Robert J. Harley, Zeta(3), Zeta(5), .., Zeta(99) 10000 digits (txt, 400 KB)

Yong-Cheol Kim, zeta(5) is irrational, May 4, 2011 [Jonathan Vos Post, May 4, 2011].

Simon Plouffe, Computation of Zeta(5)

Simon Plouffe, Zeta(5), the sum(1/n**5, n=1..infinity)to 512 digits

Simon Plouffe, Other interesting computations

Wikipedia, Zeta constant

W. Zudilin, One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational, Russ. Math. Surv., 56 (2001), 774-776.

FORMULA

From Peter Bala, Dec 04 2013: (Start)

Definition: zeta(5) = sum {n >= 1} 1/n^5.

zeta(5) = 2^5/(2^5 - 1)*( sum {n even} n^5*p(n)*p(1/n)/(n^2 - 1)^6 ), where p(n) = n^2 + 3. See A013667, A013671 and A013675.(End)

EXAMPLE

1 + 1/32 + 1/243 + 1/1024 + 1/3125 + 1/7776 + 1/16807 + ... = 1.036927755143369926331365486457...

MATHEMATICA

RealDigits[Zeta[5], 10, 100][[1]] (* Alonso del Arte, Jan 13 2012 *)

CROSSREFS

Cf. A002117, A013667, A013669, A013671, A013675, A013677.

Sequence in context: A059626 A094561 A099679 * A245223 A180593 A195771

Adjacent sequences:  A013660 A013661 A013662 * A013664 A013665 A013666

KEYWORD

nonn,cons

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified July 29 19:03 EDT 2014. Contains 245041 sequences.