login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013667 Decimal expansion of zeta(9). 9
1, 0, 0, 2, 0, 0, 8, 3, 9, 2, 8, 2, 6, 0, 8, 2, 2, 1, 4, 4, 1, 7, 8, 5, 2, 7, 6, 9, 2, 3, 2, 4, 1, 2, 0, 6, 0, 4, 8, 5, 6, 0, 5, 8, 5, 1, 3, 9, 4, 8, 8, 8, 7, 5, 6, 5, 4, 8, 5, 9, 6, 6, 1, 5, 9, 0, 9, 7, 8, 5, 0, 5, 3, 3, 9, 0, 2, 5, 8, 3, 9, 8, 9, 5, 0, 3, 9, 3, 0, 6, 9, 1, 2, 7, 1, 6, 9, 5, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,4

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.

LINKS

Table of n, a(n) for n=1..99.

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

Simon Plouffe, Plouffe's Inverter, Zeta(9)=sum(1/n^9, n=1..infinity); to 20000 digits

Simon Plouffe, Zeta(9) or sum(1/n**9, n=1..infinity);

FORMULA

From Peter Bala, Dec 04 2013: (Start)

Definition: zeta(9) = sum {n >= 1} 1/n^9.

zeta(9) = 2^9/(2^9 - 1)*( sum {n even} n^7*p(n)*p(1/n)/(n^2 - 1)^10 ), where p(n) = n^4 + 10*n^2 + 5. See A013663, A013671 and A013675. (End)

MATHEMATICA

RealDigits[Zeta[9], 10, 100][[1]] (* Harvey P. Dale, Aug 27 2014 *)

CROSSREFS

Cf. A013663, A013667, A013669, A013671, A013675, A013677.

Sequence in context: A192058 A021502 A028698 * A091933 A058347 A058547

Adjacent sequences:  A013664 A013665 A013666 * A013668 A013669 A013670

KEYWORD

nonn,cons,changed

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 27 23:36 EDT 2014. Contains 246151 sequences.